Skip to main content

Community Repository Search Results

resource project Exhibitions
The project will develop and research how an emerging technology, immersive virtual reality (IVR) using head mounted displays (HMDs), can enhance ocean literacy and generate empathy towards environmental issues. Recent advances in design have resulted in HMDs that provide viscerally realistic and immersive experiences that situate participants in underwater or other remote environments. IVR can provide many people with virtual access to these environments, including persons with disabilities, people living away from coastal areas, or those who lack access for other reasons (e.g., low-income families, underserved/underrepresented communities, persons untrained in diving). The project will develop a high quality 360-degree underwater film that includes live action footage, animation, and interactive elements. The IVR experience will take the participant through an immersive underwater journey of a Pacific reef, using realistic visualizations, narrative, and a compelling story to engage participants in learning the ecology and biology of coral reefs, as well as the impacts of climate change and human disturbances on ocean ecosystems. In addition to the IVR ocean journey, the project will integrate interactive functionality of being on a reef during mass coral spawning, an annual natural phenomenon through which coral reefs replenish their populations. With hand-held controllers, participants will be able to "swim" through the water, watch the degraded reef recover and grow and will have the ability to change the rate of coral recovery and learn how increases in temperature impede coral recovery. While research has been conducted on early, desk-top versions of IVR, the potential impact of IVR on learning is still unclear. The research findings will help guide the development of IVR for use in informal STEM environments such as aquariums, zoos, science museums, and others. The IVR experience will be shared on online platforms for home viewing, at film festivals and conferences, and in informal learning environments.

The project addresses the need for research on the impacts of IVR devices as it become more affordable and more widely used at home and in other informal and formal environments. Few studies have investigated how design elements impact the user in IVR, in which the increased immersion affects the stimuli perception and cognitive processing. The research will assess the learning affordances and impacts of the IVR experience on participant ocean literacy (adapting items from an existing ocean literacy survey), environmental empathy/feelings of presence (naturalistic observations and post-experience interviews), and perceived self-efficacy (pre-post survey, post-interview interviews). In addition, the project will research how segmentation (i.e., a continuous experience vs. an experience with breaks), generative learning tasks (hands-on experiences and interactive during IVR), and gender of the narrator in an IVR experience supports learning about ocean environments. Researchers will collect data from students attending high schools with predominantly minority student enrollments. Research findings will be widely shared through peer-reviewed publications, conference presentations, and publications for educators and designers.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jeremy Bailenson Erika Woolsey
resource project Public Programs
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -