Skip to main content

Community Repository Search Results

resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource evaluation Summer and Extended Camps
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) developed, implemented, and evaluated the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through this grant, the NCBYS extended opportunities for informal science learning for the direct benefit of blind students by conducting six NFB STEM2U regional programs included programs for blind youth, their parents/caregivers, blind teen mentors (apprentices), and museum educators.
DATE:
resource project Professional Development, Conferences, and Networks
This ChangeMakers project builds on a 2016 National Academies report finding that scientific literacy can be understood at a community level as opposed to a traditional focus on the individual. This is important since scientific knowledge is often seen as abstract and distant from the daily concerns of average citizens. A community focus shifts the spotlight away from individual learning to collective learning facilitated by trusted cultural institutions serving as social assets. This work brings together scientific expertise and community organizations to advance operational science literacy--scientific ways of problem-solving--for community leaders and functional science literacy--information and skills people can use in their daily lives--among their service populations. This will be done by gathering and sharing knowledge and developing skills and abilities to contribute to the community's overall well-being.

The New England Aquarium (NeAq) and Aquarium of the Pacific (AoP) will apply a community engagement model involving active listening, documentation, alignment of concerns and goals, and co-development of shared solutions that serves the needs of all participants. As part of the Advancing Community Science Literacy (ACSL) project, multi-disciplinary teams from NeAq, AoP and their regional partners will participate in training on the model. They will apply that training to build and implement action plans to advance community-driven responses to local environmental issues. Teams will be assessed with respect to how they use tools from their shared training, along with peer support and coaching, to make progress in engaging diverse community stakeholders. Results of the evaluation will offer insights and recommendations for informal science learning centers to serve their communities more effectively as engagement facilitators and change agents to support science literacy development and action. By applying techniques developed for cultural institutions to communicate about climate science, and combining those with techniques developed for libraries and other organizations to help meet emergent community concerns, such as storm surges and coastal flooding, it is possible to redefine the role informal science learning centers can play as part of a community culture.

ACSL is funded by the Advancing Informal STEM Learning (AISL) program which supports projects that provide multiple pathways for broadening access to and engagement in STEM learning experiences, advances innovative research on and assessment of STEM learning in informal environments, and develops understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Billy Spitzer Julie Sweetland Richard Harwood John Fraser
resource research Public Programs
In this article, science center and museum professionals from around the world share ways that they are engaging visitors in hands-on innovation. Work from the following organizations are discussed: Exploratorium, Discovery Center of Idaho, Lawrence Hall of Science, Iridescent, Conner Prairie Interactive History Park, Ideum, Discovery Place, Ontario Science Centre, Bootheel Youth Museum, Science Centre Singapore, Children's Museum of Phoenix, Discovery Museums (Acton, MA), Discovery Center of Springfield, Missouri, Museum of Science, Boston, Questacon--The National Science and Technology
DATE:
TEAM MEMBERS: Emily Schuster
resource research Media and Technology
The work described in this white paper was undertaken in direct response to information WNET received from science museums describing certain challenges they face when partnering with public television stations on outreach initiatives. The PBS Series THE HUMAN SPARK provided the perfect opportunity to explore better ways to collaborate on large-scale initiatives, and to learn how these collaborations might provide the framework for attracting new audiences, increasing membership and revenue, and developing long-lasting partnerships.
DATE:
TEAM MEMBERS: Robin Cannito
resource research Public Programs
Archaeology education activities in informal science learning settings are an underutilized, but effective strategy for teaching science inquiry skills in socially and culturally relevant contexts. This project investigated the potential for archaeological content and inquiry strategies to help informal science learning institutions increase learning with diverse ISE audiences. The project was based on foundational research for the development of a national research framework for archaeology education and a plan for developing high-quality science learning opportunities for under-represented
DATE:
TEAM MEMBERS: Michael Brody John Fisher Jeanne Moe Helen Keremedjiev
resource research Public Programs
In the United States, African Americans are underrepresented in science careers and underserved in pre-collegiate science education. This project engaged African American elementary students in culturally relevant science education through archaeology and thereby increased positive dispositions toward science. While imagining what the lives of their ancestors were like, students practiced scientific inquiry and used natural sciences to analyze archaeological sites. The project helped to improve science literacy among African American elementary students through archaeological inquiry and
DATE:
TEAM MEMBERS: Michael Brody Joelle Clark Jeanne Moe
resource research Public Programs
Reports from the NSF, NRC, AAAS, and others urge over and over that we must teach "science as science is done," that "science is a way of knowing," that our goal should be to impart "scientific habits of mind," and that learning must be learner-centered and oriented toward process. Fine. But what does this really mean for science education, and especially laboratory education?
DATE:
TEAM MEMBERS: Jane Maienschein
resource research Public Programs
The story from the museum may not be read by visitors, who come with their own knowledge and understanding and read a different story in the animals. The visitors read a story which makes sense to them and builds on what they already know and interests them. Increasingly, robotics models are being used in natural history museums, science centers, and zoos to attract visitors and tell some kind of story. What do the visitors actually talk about when looking at such robotic animals? The visitors reported on in this paper were primary school groups and families. Do they talk about similar things
DATE:
TEAM MEMBERS: Sue Tunnicliffe
resource research Public Programs
The study aims to characterize contextual learning during class visits to science and natural history museums. Based on previous studies, we assumed that “outdoor” learning is different from classroom-based learning, and free choice learning in the museums enhances the expression of learning in personal context. We studied about 750 students participating in class visits at four museums, focusing on the levels of choice provided through the activity. The museums were of different sizes, locations, visitor number, and foci. A descriptive-interpretative approach was adopted, with data sources
DATE:
TEAM MEMBERS: Yael Bamberger Tali Tal
resource research Public Programs
The article offers tips for early childhood educators on planning and implementing field experiences for young learners in natural history museums. It cites that providing children with access to nature could build their science literacy. Moreover, it emphasizes the importance of intrinsic motivation and recommends that teachers should focus on children's interests and provide them the time to relax. Teachers should also encourage active learning and ensure to make the visit memorable.
DATE:
TEAM MEMBERS: Leah Melber