Skip to main content

Community Repository Search Results

resource project Resource Centers and Networks
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.

Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE: -
TEAM MEMBERS: Keivan Stassun Nicole Joseph Kelly Holley-Bockelmann William Robinson Roger Chalkley
resource project Professional Development, Conferences, and Networks
Physics awards smaller percentages of PhDs to women (19%) and underrepresented ethnic and racial minorities (7%) than any other field in the sciences, and underrepresentation is especially pronounced at selective universities. As global competition for scientific talent heats up and US demographics shift, cultivating a robust domestic workforce is critical to US technological leadership. We seek to build on the successful American Physical Society Bridge Program (apsbridgeprogram.org) by transforming physics graduate education to fully support the inclusion of women and ethnic and racial minorities. Our vision is to create a national network of disciplinary colleagues, expert researchers, and representatives from professional associations who will develop and build evidence-based knowledge of effective practices for recruitment, admissions, and retention of women and underrepresented ethnic and racial minorities. This pilot project will include six large, highly selective physics graduate programs to demonstrate and map out a plan for a discipline-wide effort. The pilot focuses on improving admissions practices, because this strategy promises immediate and measurable impact backed by extant research. The pilot will also take exploratory steps to develop scalable recruitment and retention strategies. To refine interventions, we will conduct research to identify and understand demographically-based loss points of students in graduate physics programs and to understand how network participation facilitates change. The project will also establish connections with other STEM disciplines, beginning with mathematics and chemistry, to explore expanding these efforts.

This project is grounded in research on diversity in graduate education, organizational learning, and the resources of networks to catalyze cultural change. The project team includes expertise in institutional change, graduate admissions, student success, diverse and inclusive environments, and social science research. The pilot advances a novel research agenda on inclusion in STEM by addressing recruitment, admissions, and retention in physics graduate education as interconnected challenges of faculty learning, professional networks, and disciplinary cultural change. Physics graduate programs will report admissions data and common metrics, and will document changes resulting from project activities. Faculty will be trained on holistic admissions and diversity in selection processes, and be guided in the use of inclusive admissions practices. An external evaluator will examine project effectiveness and readiness for scaling to an Alliance phase project.
DATE: -
TEAM MEMBERS: Monica Plisch Theodore Hodapp Julie Posselt Geraldine Cochran Casey Miller
resource research Professional Development, Conferences, and Networks
This is a recording of a NISE Network online brown-bag conversation held in December 2014 about the International Year of Light. In 2013, the United Nations proclaimed 2015 as the International Year of Light (IYL). More than 100 organizations from more than 85 countries are participating in IYL. During this conversation we discussed scientific organizations that would make great partners for IYL events, shared light-related activities and videos developed by the NISE Network, and talked about the science behind some of those activities.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource research Public Programs
The NISE Network has developed numerous activities and programs suggestions for the International Year of Light and Light-Based Technologies (IYL 2015). The International Year of Light and Light-Based Technologies (IYL 2015) is a global initiative that will highlight to the citizens of the world the importance of light and optical technologies in their lives, for their futures, and for the development of society. It is an unique opportunity to inspire, educate, and connect on a global scale.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource research Public Programs
These posters about the Nanoscale Informal Science Education Network were presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS: Museum of Science, Boston Vrylena Olney
resource project Public Programs
This Nanoscale Science and Engineering Center (NSEC) is a collaboration among Harvard University, the Massachusetts Institute of Technology, the University of California—Santa Barbara, and the Museum of Science—Boston with participation by Delft University of Technology (Netherlands), the University of Basel (Switzerland), the University of Tokyo (Japan), and the Brookhaven, Oak Ridge, and the Sandia National Laboratories. The NSEC combines "top down" and "bottom up" approaches to construct novel electronic and magnetic devices with nanoscale sizes and understand their behavior, including quantum phenomena. Through a close integration of research, education, and public outreach, the Center encourages and promotes the training of a diverse group of people to be leaders in this new interdisciplinary field.
DATE: -
TEAM MEMBERS: Robert Westervelt Bertrand Halperin
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource research Public Programs
Presentation on NSF funded Nanoscale Informal Science Education Network (DRL-0940143), presented at the CAISE Convening on Organizational Networks, November 17th, 2011.
DATE:
resource project Professional Development, Conferences, and Networks
The Museum of Science (MOS) seeks to establish a Network, a national infrastructure designed to foster public awareness, engagement and understanding of nanoscale science and engineering (NSE). As part of this undertaking, MOS will create a set of interactive, media-based and discourse-based educational productes based on NSE; generate new knowledge about design for learning and produce a sustainable network that involves inromal educators and researchers. Core partners are the Exploratorium and the Science Museum of Minnesota (SMM). This project will establish for the first-time an open national network that links science centers across the nation, focusing for this award on the development and delivery of exhibits and programs addressing the interdisciplinary content areas of NSE. In addition, the Network will establish ties and collaborative relationships with university-based NSE research centers, including MRSEC's and NSEC's. An educational research and development component will address the challenges of public understanding of a difficult-to-grasp emerging field. Project deliverables will be created primarily at three sites. The Center for NISE Research at the Exploratorium will collect, develop and disseminate knowledge about how to communicate to target audiences. The NISE Center for Public Engagement at MOS will develop a network media framework for dissemination to other science centers, network radio (with WBUR), and produce forums for dialogue and deliberation with adult audiences. The NISE Center for Exhibit and Program Production and Dissemination at SMM will develop interactive exhibits, exhibition packages for distribution, and immersive media environments programs. Development of deliverables will involve the following science-technology center partners: Oregon Museum of Science and Industry (OMSI), OR; New York Hall of Science, NY; Fort Worth Museum of Science and History, TX; Museum of Life and Science, NC; Sciencenter, NY; and Association of Science-Technology Centers (ASTC). NSE research partners include Main Street Science, Cornell University; Materials Research Society; University of Wisconsin Madison, MRSEC Interdisciplinary Education Group; and Purdue University, Envision Center for Data Perceptualization. The resulting Network and the knowledge gained as a result of this project are intended to produce a dramatic improvement in the capacity of the science center field to engage and educate the public about NSE, both in quality and quantity. By Year Five, there are expected to be NSE exhibits and activities at some 100 sites across the nation. In addition, the NSE research community should gain a deeper appreciation of the role that science centers can play as intermediaries in conveying scientific research to the public.
DATE: -
resource evaluation Public Programs
The Review of NISE Network Evaluation Findings: Years 1-5 seeks to investigate the work of the NISE Network since its inception in 2005 and provide an overarching summary of NISE Net Public Impacts evaluation efforts to the NISE Network and the broader ISE field.
DATE:
resource evaluation Professional Development, Conferences, and Networks
The documents that comprise the Inverness Research Summative Report provide a comprehensive and systematic review of the progress made in developing a network organization capable of supporting nanoscience education for the public on a national scale.
DATE:
TEAM MEMBERS: Mark St. John Jenifer V. Helms Pam Castori Judy Hirabayashi Laurie Lopez Michelle Phillips
resource project Media and Technology
This planning grant award addresses the subject of cosmology using contemporary film technology. A screen play and film prototype will take viewers from the historical Big Bang phenomena to contemporary thinking on dark energy and matter. STEM disciplines incorporated within this project are mathematics, physics, biology, chemistry and geology, in addition to astronomy. An additional significant issue in this award will be the effort to form a network of dome and planetarium theaters. Such an organization could facilitate promotion and evaluation of this project and future projects. In the future, the network will be positioned to assess the differences in educational impact from large format flat screen, large format dome screen and planetarium dome presentations. Collaborations on this project include The Reuben H. Fleet Science Center, the Mathematics Science Research Institute, and advisors George Smoot and Saul Perlmutter of the Lawrence Berkeley Laboratory. Barbara Flagg is the project evaluator. Specific needs for the planning grant are to: 1. gather formative evaluation on audience parameters; 2. develop a short prototype film and a first draft of the screen play; 3. complete the advisory team; 4. translate the deliverables into Spanish language; 5. evaluate and bid the computer animation facilities; and 5. identify a network of dome and planetarium theaters for their evaluation.
DATE: -
TEAM MEMBERS: Jeffrey Kirsch Barbara Flagg