Skip to main content

Community Repository Search Results

resource evaluation Public Programs
In 2015, Fairchild Tropical Botanic Garden (Fairchild), located in Miami-Dade County, Florida, entered into partnership with NASA’s Kennedy Space Center (KSC) to help advance NASA’s plant research through classroom-based STEM citizen science with a project entitled, Growing Beyond Earth (GBE). The project, initially launched with 3,600 students at 97 middle and high schools primarily in Miami-Dade County, has expanded to include 10,639 students at 210 schools in 26 states and Puerto Rico. GBE is designed to: a) Increase middle and high school students’ interest and skills in science by
DATE:
TEAM MEMBERS: Catherine Raymond Marion Litzinger Yang Wen Amy Padolf Carl Lewis
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI
resource evaluation Exhibitions
This front-end evaluation study is part of Designing Our Tomorrow: Mobilizing the Next Generation of Engineers, a five-year project (2018–2023) led by the Oregon Museum of Science and Industry (OMSI) with the support of the National Science Foundation (NSF, DRL-1811617) and project partners: Adelante Mujeres, the Biomimicry Institute, and the Fleet Science Center. The Designing Our Tomorrow (DOT) project seeks to promote and strengthen family engagement and engineering learning via compelling exhibit-based design challenges, presented through the lens of sustainable design exemplified by
DATE:
resource evaluation Public Programs
Our goal in creating this guide is to provide practitioners, organizations, researchers, and others with a “one-stop shop” for measuring nature connections. The guide is for those interested in assessing and enhancing the connections their audiences have to nature; we use the term “audience” to refer broadly to your participants or to any group you are trying to assess. The guide can help you choose an appropriate tool (for example, a survey or activity) for your needs, whether you work with young children, teenagers, or adults (see the Decision Tree on p. 14). The guide also includes 11 tools
DATE:
TEAM MEMBERS: Gabby Salazar Kristen Kunkle Martha Monroe
resource research Public Programs
Background. STEM identity has emerged as an important research topic and a predictor of how youth engage with STEM inside and outside of school. Although there is a growing body of literature in this area, less work has been done specific to engineering, especially in out-of-school learning contexts. Methods. To address this need, we conducted a qualitative investigation of five adolescent youth participating in a four-month afterschool engineering program. The study focused on how participants negotiated engineering-related identities through ongoing interactions with activities, peers
DATE:
resource evaluation Media and Technology
The SciGirls in Space Front End Evaluation included surveys with project advisors, girls and families about the nature and extent of partner program offerings to help inform production of media and use of media in outreach. Question 1: To what extent do advisors, girls and their family members find the girls and professionals featured in the (existing) episodes and role model videos to be effective role models? Question 2: To what extent do they find episode topics and stories relevant to their everyday lives?
DATE:
TEAM MEMBERS: Hilarie Davis
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.

The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan Patricia Wonch Hill Elizabeth VanWormer
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The goal of this award is to advance understanding of how children's science podcasts can provide families with information to help ease children's anxiety and fears during a pandemic. The project's hypothesis is that through listening to Brains On! coronavirus-related episodes, children will increase their understanding of science concepts related to the pandemic. As they gain this understanding, it is predicted that their overall fear and anxiety about the pandemic will diminish, they will feel empowered to ask pandemic-related questions and will engage in more science- based conversations with their family members. The project will develop three Brains On! podcast episodes focused specifically on the COVID-19 pandemic for kids aged 5 to 12 and their families. The research questions include:


How and to what extent do Brains On!'s coronavirus-based episodes help children and their families understand and talk about science-related pandemic topics? What kind of conversations are sparked by these episodes?
What kinds of questions do children have after listening to the Brains On! coronavirus episodes and what are the reasons for their questions? What can the questions tell us about the impact of listening on kids' science engagement and learning?
What resources do parents need to answer children's questions and help them understand science topics related to the pandemic?



This project is a collaboration between a media producer, Minnesota Public Radio and researchers at The Science Museum of Minnesota. Brains On! already has a large listening audience, with 7 million downloads a year, and more than 200,000 unique listeners a month and these new episodes are likely to increase listenership further. The research findings will be quickly disseminated to a wide range of audiences that can immediately apply the findings to create media and other coronavirus-related educational resources for families.

The PI's prior NSF funded projects have found that previous Brains On! podcasts with a range of STEM content increase the number and sophistication of the science questions children ask and lead to science-based conversations with family members. This project will study the impacts in relation to a singular topic, COVID-19. Three online surveys of Brains On! listeners (families with children ages 5 - 12 years old) will be conducted. The first survey to be conducted as soon as the project begins will focus on parents reflecting on what information is needed at that stage of the pandemic. Two additional listener surveys will occur immediately after new COVID-19 podcast episodes are released. These surveys will ask content-specific questions to understand how well the episode conveys that information to children and their families, what conversations were sparked from the content, and what additional information needs families have. Prior to administering each of the three surveys, video-based think-aloud interviews with 10 families will test and revise survey questions.

Survey participants will be recruited using language in Brains On! episodes, social media, website, and newsletters. A sample size of around 1,000 for each of the surveys is planned (based on a 95% confidence interval and ±3% sampling error). Analyses will include descriptive statistics and thematic coding of open-ended survey questions. Subgroup samples, when large enough will look at differences in responses by demographic variables (e.g. race/ethnicity, household income, highest level of education in the household, an adult in the household with a STEM career, gender of child, geographic location). The researchers and Brains On! staff will work together to identify how the findings can be applied to the development of subsequent coronavirus-related episodes and shared with the ISE field to further support families? education and information needs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Media and Technology
Communication is an essential component to scientific inquiry, and specifically the primary literature is highly valued by scientists. Yet, the role of primary literature within scientific inquiry is generally absent from the science classroom. In this study we examined how middle and high school student perceptions of scientific inquiry changed after they engaged in a peer-review and publication process of their research papers. We interviewed twelve students who published their papers in the [Journal], a science journal dedicated to publishing the research of middle and high school students
DATE:
TEAM MEMBERS: Sarah Fankhauser Gwendolynne Reid Gwendolyn Mirzoyan Clara Meaders Olivia Ho-Shing
resource evaluation Exhibitions
Researchers from Ideum and XPRIZE Foundation recently completed a multi-site study of the way people use an innovative experience on health technologies. Funded by the Qualcomm Foundation, the team traveled to three US science centers to see how museum visitors interacted with and learned from the exhibit, which Ideum and XPRIZE designed and developed in 2018. The exhibit was funded by XPRIZE after 2017’s Qualcomm Tricorder XPRIZE competition, in which teams developed ideas for new kinds of portable medical devices. Running on a custom 65” Ideum Platform multitouch table, the experience
DATE:
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences. This ITEST project aims to research the STEM career interests of late elementary and middle-school students and, based on the results of that research, build an informal education program to involve families and community partners to enhance their science knowledge, attitudes, experiences, and resources. There is an emphasis on underrepresented and low income students and their families.

The project will research and test a new model to promote the development of positive attitudes toward STEM and to increase interest in STEM careers. Phase 1 of the project will include exploratory research examining science capital and habitus for a representative sample of youth at three age ranges: 8-9, 9-10 and 11-12 years. The project will measure the access that youth have to adults who engage in STEM careers and STEM leisure activities. In phase II the project will test a model with a control group and a treatment group to enhance science capital and habitus for youth.
DATE: -