Skip to main content

Community Repository Search Results

resource project Public Programs
In partnership with the Pasadena and Los Angeles Unified School Districts, the Armory Center for the Arts will develop and implement comprehensive visual art-math and visual art-science curricula for grades two through five at Title I elementary schools. The curricula will be developed in conjunction with Armory teaching artists and educators, and will align with the Common Core Standards for math and science, and with the National Core Visual Arts Standards. The museum will deliver the program in 48 classrooms over a three-year period. Professional development, paired with in-class program modeling, will enable participating teachers to implement arts integration strategies into their teaching practice, with an overall goal of creating a sustainable and long-term impact on student learning. An external evaluator will oversee program assessment in the schools. The museum will post sample lessons from each curriculum online to demonstrate the style and scope of the program for possible use by additional school districts.
DATE: -
TEAM MEMBERS: Julienne Fusello
resource research Public Programs
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS: Alex Bell Raj Chetty Xavier Jaravel Neviana Petkova John Van Reenen
resource research Public Programs
This is a story about learning STEM content and practices while making objects. It is also a story about how that learning is contextualized in one young man’s disruption of racism simply by trying to learn how gears work. Our project, Investigating STEM Literacies in MakerSpaces (STEMLiMS), focuses on how adults and youth use representations to accomplish tasks in STEM disciplines in formal and informal making spaces (Tucker-Raymond, Gravel, Kohberger, & Browne, 2017). Making is an interdisciplinary endeavor that may involve mechanical and electrical engineering, digital literacies and
DATE:
resource evaluation Media and Technology
Peg + Cat is a popular broadcast television series, developed by The Fred Rogers Company and airing on PBS, in which a girl named Peg and her sidekick, Cat, solve everyday problems using mathematics, creativity, persistence, and humor. Peg + Cat: Developing Preschoolers’ Early Math Skills was a three-year project, funded by the National Science Foundation, that aimed to impact children’s interest and engagement with mathematics, as well as their development of positive social-emotional skills. The project supported early math learning via the creation of additional Peg + Cat episodes, online
DATE:
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Exhibitions
Mathematics plays a significant role in understanding and participating in science, technology, and engineering (STEM). Research shows that early mathematics experiences in everyday life are critical to the development of children's mathematical knowledge. This project will explore an innovative approach to fostering parent-child math interactions and conversations related to mathematical ideas. The approach will use community-based, exhibit installations called Mathscapes. These are artistic, culturally relevant, easily accessible, physical installations designed to encourage adults and children (ages 3 to 7) to use their immediate environment to playfully explore key early math concepts. The project also addresses a need for research about the cultural experiences and resources that marginalized children and families bring to mathematical conversations. Understanding parent-child interactions about mathematics community settings could result in new knowledge about early math learning among low income children and parents. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This exploratory study will design and investigate an innovative approach to encouraging math talk and math-related interactions between parents and children (ages 3-7) through the creation of MathScapes. These are temporary physical installations designed to use the immediate environment to playfully explore mathematical concepts. This study will be conducted in two Boston neighborhoods that are populated by low-income, non-dominant minority and immigrant families. Adopting a case study approach, the project will use observational methods, discourse analysis of parent/child talk, and interviews to study the interactions of 200 families at two neighborhood Mathscape installations. LENA devices will be used to capture parent/child talk at the Mathscapes while researchers use observational methods to document participant interactions, talk, and gestures. Data sources will include audio recordings of family talk, field notes of family interactions at Mathscape installations, surveys, and interviews. A qualitative approach will be used to produce research findings at multiple levels. The focus of the analysis will be to understand if this approach enhances the quality and quantity of math talk between parents and children. The project will be carried out by a research-practice-community partnership in Boston, Massachusetts that includes community mathematics educators, education researchers, and participating children and families. The design of community installations could promote engagement with math through adult/child conversations in culturally-relevant contexts situated in the local environment. By addressing the cultural experiences and resources of young people, the project could greatly enhance our understanding of how to leverage the resources that children and families bring to engaging with mathematics.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Omowale Moses Danny Martin Catherine O'Connor Nermeen Darshoush
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Pilot and Feasibility study will investigate strategies for enhancing the mathematics in museum-based making and tinkering activities and lay the foundation for a full research study on broadening family participation in mathematics through making. This proposal builds directly on the NSF-funded Math in the Making convening. During this convening, questions about how to authentically highlight and enhance the mathematics in making and tinkering experiences, and how different math-enhancement approaches might influence learner experiences and outcomes, emerged as critical issues for researchers, educators, and mathematicians alike. The project aims to provide a practical lens to help researchers and educators connect topics across STEM with making and tinkering experiences. The project also seeks to advance theoretical understandings of museum-based learning by exploring ways that activity design and facilitation strategies influence how visitors understand the nature and goals of the experience and, in turn, how these visitor experiences shape learning outcomes. The project is designed to explore the most promising of these math-enhancement strategies in more depth, to propose as a next project and develop a theoretical framework for understanding and describing how these strategies influence how families understand and engage with the mathematics in maker experiences. Through several culturally-responsive approaches developed in collaboration with community-based organizations, the project will research how mathematics in maker experiences influences participant engagement and learning. The project will culminate in the design of a research study. Reports and resources developed by the project will be broadly disseminated to researchers, mathematicians, and educators. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Informal/Formal Connections
Data are the workhorses of the scientific endeavor and their use is rapidly evolving (Haendel, Vasilevsky, and Wirz 2012). Ask almost any scientist about their work, and the conversation will involve the data they collect and analyze. The use of data in science is often captured in science classrooms as an ill-defined link between math and science that may not reflect authentic data practices (Tanis Ozcelik and McDonald 2013). Students often find themselves collecting data to confirm obvious conclusions within highly structured labs, and data become a way for students to demonstrate the
DATE:
TEAM MEMBERS: Michael Giamellaro Kari O'Connell
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.

The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE: -
TEAM MEMBERS: Joe Hastings Armelle Casau Obenshain Koren Kersti Tyson Angelo Gonzales
resource project Summer and Extended Camps
The University of Texas at Austin's Texas Advanced Computing Center, Chaminade University of Honolulu (CUH), and the Georgia Institute of Technology will lead this NSF INCLUDES Design and Development Launch Pilot (DDLP) to establish a model for data science preparation of Native Hawaiian and Pacific Islander (NHPI) students at the high school and undergraduate levels. The project is premised on the promise of NHPI communities gaining access to, and the ability to work with, large data sets to tackle emerging problems in the Pacific. Such agency over "big data" sets that are relevant to Pacific issues, and contemporary skills in data science, analytics and visualization have the potential to be transformative for community improvement efforts. The effort has the potential to advance knowledge, instructional pedagogy and practices to improve NHPI high school and undergraduate students performance in and attraction to STEM education and careers.

The project team will work to: 1) Increase interest and proficiency in data science and visualization among NHPI high school and undergraduate students through a summer immersion experience that bridges computation and culture; 2) Build data science capacity at an NHPI serving undergraduate institution (CUH) through creation of a certificate program; and 3) Develop and expand partnerships with other organizations with related goals working with NHPI populations. The month-long summer training for 20 NHPI college students, and five NHPI high school students, takes place at CUH and focuses on data science, visualization, and virtual reality, including working on problem sets that require data science approaches and incorporate geographically, socially- and culturally-relevant research themes.
DATE: -
TEAM MEMBERS: Kelly Gaither Rosalia Gomez
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Summer and Extended Camps
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.

Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE: -
TEAM MEMBERS: David Auckly Henry Fowler Jayadev Athreya