Skip to main content

Community Repository Search Results

resource project Public Programs
The Jackson Hole Children’s Museum will expand its K–5th grade STEAM programs, which serve more than 1,300 students in Teton County School District #1. The STEAM programs provide inquiry-based, hands-on programming to all K–5 District students in accordance with the Wyoming State Science Standards. An additional 500 students are reached through homeschool groups, summer school, childcare and therapy organizations, and nearby Idaho schools. Each two-hour program opens with interactive, student-centered, scientific method lab stations. Students are then challenged to use newly acquired vocabulary and knowledge to complete a hands-on building project. The program is designed to contribute to increasing science and engineering literacy in the community and to support the development of students’ 21st century skills.
DATE: -
TEAM MEMBERS: Anna Luhrmann
resource project Informal/Formal Connections
The Pensacola MESS Hall will create and deliver “Science Sprouts”—a four-session classroom program for kindergarten students, including related professional development for teachers. The program will focus on 10 underserved elementary schools in the community, providing students and teachers access to quality math, engineering, and science experiences. Trained museum educators will engage children in hands-on exploration while engaging teachers in effective methods to enhance classroom learning. The lessons will include a story followed by small group activities that reinforce key concepts. To increase the teachers’ comfort in program delivery and application to other curricular units, the activities will utilize common materials and connect to children’s literature.
DATE: -
TEAM MEMBERS: Sarabeth Gordon
resource project Media and Technology
Future educational robots are emerging as social companions supporting learning. By socially interacting with such a robot, learners can potentially reason and talk about the things they are learning and receive help in seeing the relevance of STEM in their daily lives. However, little is known about how to design educational robots to work with youth at home over a long period of time. This project will develop an informal science learning program, called STEMMates, in collaboration with a local community center, for youth with little interest in science. The program will partner learners with an in-home learning companion robot, designed to read books with youth and provide science activities for them at the community center, where youth will engage in exciting and personally relevant science learning. As the learner reads books, the robot will make comments about what is happening in the book to help connect the reading to the science activities at the community center. The overarching goals of STEMMates are to: (a) positively support youth's individual interest in science and future science learning, (b) connect in-home learning experiences with out-of-school community-based learning, (c) bridge the gap between formal and informal engagement and learning in science, and (d) encourage the participation of youth who are underrepresented and who have low interest in STEM learning. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments.

Researchers will work with youth and staff at the community center, alongside experts in informal science learning, to design the program and then test how learners respond to reading with the robot and participating in the science activities and whether this program has a lasting impact on their science interest. Social interactions with a robot may help distribute cognitive load during learning activities to help youth reason about STEM and also supplement learning by improving feelings of value and belongingness in order to facilitate lasting interest development. Following a mixed-methods research approach using qualitative and quantitative data-collection techniques, the research team will investigate the following research questions: (1) What social and interest-development supports and activities can be utilized as socially situated interest scaffolds in an informal and in-home, augmented reading and science activity program to promote individual interest and learning in science for low interest learners? How can a social robot best facilitate this program? (2) How do learners perceive and interact with the robot in authentic, in-home, long-term situations, and how does this interaction change over time? (3) Does working with a robot designed with socially situated interest scaffolds increase individual interest in science when compared to a pre-intervention baseline, and do these effects impact future (long-term) interest and engagement in formal science learning? To answer these research questions, researchers will implement the science learning program during an 11-week summer deployment and utilize an AB single-case research design. Interview-based qualitative data and self-report surveys to examine the learner?s perception of the robot and their evolving interest in science and quantitative data on science learning using pre-/post-measure comparisons will be collected. Log data of time-on-task, reading rate, book selection and reading goal attainment will also be collected by the robot. The outcomes of this project will lay the groundwork for future investigations of the design of social robots for a diversity of learner populations and their use in different informal learning settings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bilge Mutlu
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.

The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
DATE: -
TEAM MEMBERS: Darryl Williams Karen Peterson Lynn Dierking Tara Cox Julia Skolnik Scott Pattison
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn