Skip to main content

Community Repository Search Results

resource research Media and Technology
Young people today have grown up living substantial portions of their lives online, seeking entertainment, social relationships, and a place to express themselves. It is clear that participation in online communities is important for many young people, but less clear how this translates into civic or political engagement. This volume examines the relationship of online action and real-world politics. The contributors discuss not only how online networks might inspire conventional political participation but also how creative uses of digital technologies are expanding the boundaries of politics
DATE:
TEAM MEMBERS: W. Lance Bennett
resource research Media and Technology
Conventional wisdom about young people's use of digital technology often equates generational identity with technology identity: today's teens seem constantly plugged in to video games, social networks sites, and text messaging. Yet there is little actual research that investigates the intricate dynamics of youth's social and recreational use of digital media. This book fills that gap, reporting on an ambitious three-year ethnographic investigation into how young people are living and learning with new media in varied settings—at home, in after school programs, and in online spaces. By
DATE:
TEAM MEMBERS: University of California, Irvine Mizuko Ito
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Public Programs
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE: -
TEAM MEMBERS: Vivian Altmann Darlene Librero Virginia Witt Michael Funk
resource project Public Programs
The Addressing Gender Barriers in STEM through Theatre of Social Engagement project responds to the need to educate the public about the careers in computer and information science and engineering (CISE) fields by educating high school students, parents, teachers and counselors about the barriers to participation that confront women and other underrepresented groups. In this Communicating Research to Public Audiences (CRPA) project, a dramatic play is used to communicate the findings from the PI's work which resulted in a theory about gender and IT to explain and predict gender (under)representation in IT fields. The play dramatizes constructs of the theory, particularly the ways in which gender, ethnicity, and class affect identity and career and life decisions. Drawing from life history interviews conducted as a part of the research, the storyline of the dramatic play centers on three young women who are graduating from high school and making decisions about their futures and possible careers in IT. Situated squarely in the realm and literature of "theatre of social engagement," this play, and its staged readings and ancillary website, extend access beyond the scientific community to new scientific research on gender barriers in CISE. Learning goals for the project include: 1. Awareness and knowledge about possible computer and information science and engineering careers; barriers and stereotypes that affect CISE career choice among women; and "significant others" such as partners, family members, mentors and teachers who can make a difference at key inflection points in career decision making. 2. Attitude change about the CISE fields being open to everyone regardless of gender, ethnicity, race or class; how one's individual characteristics can be used to resist barriers to inclusion in CISE careers. 3. Intended behavior about learning more about CISE careers and educational opportunities; and responding to negative stereotypes related to CISE. Evaluation of the proposed project will include observations, talk-back sessions (focus groups) after readings of the play, pre-post surveys administered at the showings, and a second post-performance survey to be administered a certain amount of time after the showing. Dissemination will be through readings of the play for audiences in New Jersey and Pennsylvania, with partnering informal learning venues, and through an associated website which will allow visitors to download and stage the play themselves. Advertisement for the play and the website will take place through websites such as Facebook, Twitter, and websites that promote diversity in computing. In addition, the PI intends to contribute to the scholarly literature on theatre as an informal learning approach and on the findings of how audiences respond to the play itself.
DATE: -
TEAM MEMBERS: Eileen Trauth
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee