Skip to main content

Community Repository Search Results

resource research Websites, Mobile Apps, and Online Media
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Kristen-Gillespie Lynch Amy Hurst Sinéad O’Brien Ariana Riccio Wendy Martin
resource research Exhibitions
Tinkering experiences in informal learning spaces can engage families in engineering practices and support learning (Pagano et al., 2020). Further, reflections after informal learning experiences can reveal and extend children’s memory and learning (Pagano et al., 2019), but reflections vary by age, culture, setting, program, and other factors (Fivush et al., 2006). We examined how the conversational structure and engineering content of families’ reflections vary across multiple museum visits and across different types of tinkering programs (e.g., open-ended vs. function-focused).
DATE:
TEAM MEMBERS: Riley George Beatrice Bailey Lauren Pagano Catherine Haden
resource research Exhibitions
Tinkering activities designed for parents and children can foster spatial thinking, which benefits spatial skill development (Ramey et al., 2020). During tinkering activities, families may be challenged to use tools and materials to solve open-ended problems (Bevan, 2017). The problems specified by different tinkering challenges can highlight intrinsic or extrinsic spatial information (Chatterjee, 2008; Mix et al., 2018). In this project we asked, how does the spatial information highlighted by a tinkering challenge affect the quality of families’ spatial thinking?
DATE:
TEAM MEMBERS: Naomi Polinsky Elena Fiegen Kaitlyn Hurka Catherine Haden David Uttal
resource research Exhibitions
The tinkering process of making, testing, and iteratively redesigning projects can teach children about engineering concepts (Marcus et al., 2021; NGSS, 2013), but there is variability in how tinkering programs are designed. Storytelling may make children’s learning experiences personally meaningful and narratively organized, thereby supporting memory (Bruner, 1996). We designed multiple story-based tinkering programs and examined how the types of story characters and goals introduced in the tinkering programs would relate to the content of families’ talk in post-tinkering reflections.
DATE:
TEAM MEMBERS: Lauren Pagano Riley George Catherine Haden David Uttal
resource research Exhibitions
In this project, we asked whether storytelling during tinkering might support children’s engagement in STEM and how that may differ across boys and girls. According to Bruner (1996), stories can help children to organize experiences by adding coherence, increasing understanding, and facilitating learning. We observed associations between story and STEM in two contexts: home and museum exhibit.
DATE:
TEAM MEMBERS: Bianca Aldrich Grace Ocular Catherine Haden
resource research Exhibitions
Given the important role of autonomy support in children’s motivation and learning, this study asked whether parents’ use of autonomy supportive language (vs. controlling language) was associated with children’s engagement in science, technology, engineering, and mathematics in a bi-directional manner during an at-home tinkering activity.
DATE:
TEAM MEMBERS: Bianca Aldrich Catherine Haden
resource project Public Programs
The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Public Programs
The Lewis H. Latimer House Museum will develop a more cohesive education program that reflects both the museum's resources and the needs of local schools. The museum's deputy director and Tinkering Lab educator will work together to design a curriculum that meets current New York State and city standards, enabling the museum to more effectively serve schools in the community with object-based learning experiences. Packets of educational materials will be developed and made available for school teachers to download and use in their classrooms prior to and following visits to the museum. Target schools will be actively involved in the process of testing and utilizing the products. Project results will be shared with internal and external stakeholders to sustain long-term improvement and enhance institutional capacity.
DATE: -
TEAM MEMBERS: Ran Yan
resource research Public Programs
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. Digital storytelling, in which narratives and reflections are combined with photos and videos in order to be shared with an audience, has become a familiar, enjoyable activity for many children (Robin, 2008). We examine whether digital storytelling activities during tinkering and reflection will be related to
DATE:
TEAM MEMBERS: Lauren Pagano Riley George Afnan Amdeen Catherine Haden
resource research Public Programs
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. We examine whether digital storytelling activities during tinkering and reflection will be related to more engineering talk.We also explore whether children with previous digital storytelling experience will produce higher quality narratives than children without.
DATE:
TEAM MEMBERS: Riley George Afnan Amdeen Lauren Pagano Catherine Haden
resource project Public Programs
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.

The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Jill Castek Leslie Sult Jennifer Nichols Kevin Bonine Blaine Smith
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland