Skip to main content

Community Repository Search Results

resource project Public Programs
Oregon State University (OSU) will facilitate a Polar STEAM (Science, Technology, Engineering, Arts and Mathematics) program that aims to increase the impact and visibility of polar science by integrating arts- and education-based elements into the polar science research setting.
DATE: -
TEAM MEMBERS: Julie Risien Kim Bernard Susan Roberta Rowe Peter Betjemann
resource research Professional Development, Conferences, and Networks
In this paper, we take an in-depth look at the physics faculty and student volunteers, which we will refer to as the program personnel, involved in informal physics programs to better understand their roles and responsibilities, their interactions with audiences, and their connectedness with content and activities. Understanding the complexities between programs, personnel, and audiences allows us to look for areas to improve informal physics programs in being inclusive, in being equitable and accessible, in supporting physics students who participate, and in connecting more strongly to the
DATE:
TEAM MEMBERS: Bryan Stanley Dena Izadi claudia fracchiolla Kathleen Hinko
resource research Professional Development, Conferences, and Networks
This Informal Learning Review article briefly recounts the activities of Center for Advancement of Informal Science Education's (CAISE) over three award periods, from 2007 through 2022. It includes links to key CAISE resources and event documentation. CAISE sunsetted its activities in early 2022 and passed the baton of leadership of the National Science Foundation (NSF) Advancing Informal STEM Learning (AISL) program resource center to REVISE- the Reimagining Equity and Values in Informal STEM Education center.
DATE:
TEAM MEMBERS: James Bell David Ucko
resource project Public Programs
The Joseph Moore Museum at Earlham College will revise its interpreter training and educational programs to reflect current best practices in participatory STEM education. This project will include strengthening their programs to better prepare undergraduate educators, as well as updating the delivery of their top three requested programs to ensure learner-centered experiences. The project will include the development of a training program modeled on a combination of principles set out by the National Association of Interpretation and the Reflections on Practice program. Undergraduate educators will undergo systematic training in the fundamentals of educational theory and practice and benefit from a program of sustained evaluation and mentorship.
DATE: -
TEAM MEMBERS: Heather Lerner
resource project Public Programs
The Hollister Herbarium at Tennessee Tech University will implement “Rooting Students in their Botanical History” — an educational module targeted for 11th and 12th grade biology students. The module will address “plant blindness,” a phenomenon defined as the failure to notice or appreciate plants. The herbarium will collaborate with three Tennessee high school biology teachers, a videographer, and a graduate research assistant to increase knowledge, awareness, and appreciation of plants over the three-year project. Students also will get to know herbarium specimens as an essential resource for information about the natural world.
DATE: -
TEAM MEMBERS: Shawn Zeringue-Krosnick
resource project Public Programs
The Arizona-Sonora Desert Museum will partner with the Flowing Wells Unified School District on “We Bee Scientists,” a program to engage students in grades K–6 in real-world science by learning about bees—the most important group of pollinators. They plan to create a curriculum and related activities aligned with the Arizona science standards. The program is an expansion of the Tucson Bee Collaborative, which empowers community scientists from “K to grey” to contribute to ecosystem health and understanding through the study of native bees. The museum also will partner with Pima Community College and the University of Arizona on the program, which will involve volunteers and high school, college, and university students in documenting the abundance and diversity of native bees.
DATE: -
TEAM MEMBERS: Debra Colodner
resource project Professional Development, Conferences, and Networks
Growth in the US Latinx population has outpaced the Latinx growth in science, technology, engineering, and math (STEM) degrees and occupation, further widening the ethnic gap in STEM. Mathematics has often identified as a bottleneck keeping many youth, especially minoritized youth, from pursuing STEM studies. Unequal opportunities to develop powerful math assets explain differences in math skills and understanding often experienced by minoritized youth. Implementing culturally responsive practices (CRP) in afterschool programs has the potential to promote math skills and motivation for youth from minoritized groups. However, extensive research is needed to understand which culturally responsive informal pedagogical practices (CIPPs) are most impactful and why. This project aims to identify and document such practices, shed light on the challenges faced by afterschool staff in implementing them, and develop training resources for afterschool staff to address these challenges. This project is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The fundamental research questions addressed by the project focus on (1) which CIPPs matter most in the context of a STEM university-community partnership engaging Latinx youth, and (2) in what context(s) and under what conditions do these CIPPs relate to positive outcomes for both youth participants and college mentor/facilitator. A third aim is to build capacity of afterschool staff for implementing CIPPs in informal STEM afterschool programs. The first two aims are addressed through a mixed-methods research study which includes quantitative surveys and qualitative in-depth interviews with five cohorts of adolescent participants, parents, and undergraduate mentors. Each year, surveys will be collected from adolescents and mentors at four time points during the year; the in-depth interviews will be collected from adolescents, parents, and mentors in the spring. In total, 840 adolescents and 210 mentors will be surveyed; and 87 adolescents, 87 parents, and 87 mentors will be interviewed. The third aim will be addressed by leveraging the research findings and the collective knowledge developed by practitioners and researchers to create a public archive containing documentation of CIPPs for informal STEM afterschool programs and training modules for afterschool staff. The team will disseminate these resources extensively with informal afterschool practitioners in California and beyond. Ultimately, this project will lead to improved outcomes for minoritized youth in informal STEM afterschool programs across the nation, and increased representation of minoritized youth in STEM pursuits.
DATE: -
TEAM MEMBERS: Alessandra Pantano Sandra Simpkins Cynthia Sanchez Tapia
resource evaluation Exhibitions
The Northwest Passage Project explored the changing Arctic through an innovative expedition aboard the Swedish Icebreaker Oden to conduct groundbreaking ocean science research, while it actively engaged 22 undergraduate and graduate students from the project’s five Minority Serving Institution (MSI) partners and 2 early career Inuit researchers in the research at sea. Over 35 hours of training in Arctic research techniques, polar science, and science communication was provided to these participants, who were engaged in the Northwest Passage expedition and worked with the onboard science team
DATE:
TEAM MEMBERS: Gail Scowcroft Jeff Hayward
resource project Informal/Formal Connections
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.

The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
DATE: -
TEAM MEMBERS: Edward Price Frank Gomez James Marshall Sinem Siyahhan James Kisiel Heather Macias Jessica Jensen Jasmine Nation Alexandria Hansen Myunghwan Shin
resource research Informal/Formal Connections
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden