Skip to main content

Community Repository Search Results

resource research Public Programs
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
DATE:
resource research Public Programs
Engineering is a critical yet understudied topic in early childhood. Previous research has shown that even young children can engage in (versions of) engineering design practices and processes that are similar to those of adult engineers and designers. In this session, we will share and discuss current research projects to explore how different in-school and out-of-school contexts and activities support 3- to 8-year-old children as they engage in engineering design. We will consider ways that the different characteristics of the activities and spaces, as well as the practices of teachers
DATE:
TEAM MEMBERS: Scott Pattison Monica Cardella Hoda Ehsan Smirla Ramos-Montañez Gina Navoa Svarovsky Merredith Portsmore Elissa Milto Mary Beth McCormack Chris San Antonio-Tunis M. Terri Sanger
resource project Informal/Formal Connections
There are several critical reasons to understand and support interest development in early childhood: (a) as a primary motivator of engagement and learning; (b) interest development in preschool predicts important learning outcomes and behaviors in early elementary school; and (c) early childhood interests motivate ongoing interest development. Thus, there is growing recognition that interest is not just important but fundamental to education and learning. Head Start on Engineering (HSE) is a multi-component, bilingual (Spanish/English), family-focused program designed to (1) foster long-term interest in the engineering design process for families with preschool children from low-income backgrounds and (2) support family development and kindergarten readiness goals. The HSE program, co-developed with the Head Start community, provides families with developmentally appropriate, story-based engineering design challenges for the home and then connects these to a system of strategically aligned Informal STEM Education (ISE) experiences and resources. This current project, HSE Systems, builds on a previous HSE Pathways project which (a) established that participating families develop persistent engineering-related interests; (b) highlighted the value that the Head Start community has for the program and partnership; and (c) generated a novel, systems perspective on early childhood interest development. The aim of HSE Systems is to develop and test a model of early childhood STEM engagement and advance knowledge of how the family as a system develops interest in STEM from preschool into kindergarten.

Through the Design Based Implementation Research (DBIR) process, the team will iteratively refine and improve the HSE program and theory of change using ongoing feedback and data from staff, families, and partners. It is also designed to explore program impacts on family interest development over a longer period, as children enter kindergarten. The DBIR work will focus primarily on the program model questions, while the case study research will focus on the family interest questions, with both strands informing each other. The initial work is organized around a series of feedback and design-testing cycles to gather input from families and other stakeholders, update the program components and activities in collaboration with families and staff, and prepare for full implementation. During the next phase, the team will implement the full program model with six Head Start classrooms and track family experiences and interest development into kindergarten. During final implementation phase, the team will finish data collection, conduct retrospective analysis with all the data, and update the program model and theory of change.

This project will directly address the AISL program goals by broadening access to early childhood informal STEM education for low-income communities, with a focus on Spanish-speaking families, and building long-term skills and learning dispositions to support STEM learning inside and outside of school. Beyond the topic of engineering, HSE supports Head Start school readiness and child and family development goals, which are the foundation of lifelong success.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource evaluation Public Programs
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2017. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from front-end evaluation on the topic of infrastructures and summative evaluation of the GROW exhibition.
DATE:
TEAM MEMBERS: Elisa Israel Sara Davis Kelley Staab Taline Kuyumjian Lauren Holley Kate Livingston
resource research Informal/Formal Connections
Fostering interest in science is critical for broadening engagement with science topics, careers, and hobbies. Research suggests that these interests begin to form as early as preschool and have long-term implications for participation and learning. However, scholars have only speculated on the processes that shape interest development at this age, when children’s exposure to science primarily occurs during family-based learning experiences. Moving beyond speculation, we conducted a qualitative study with seven low-income mothers and their four-year-old daughters from Head Start to (a) develop
DATE:
resource research Public Programs
This poster was presented at the 2019 NSF AISL Principal Investigators Meeting. The project's goals were to: Use a series of 6 museum-facilitated family workshops at pre-kindergarten (pre-k) centers to promote informal STEM learning. Examine 3 conditions in which families and their children most benefit from “doing science and math” together. Focus on populations that are typically underrepresented in STEM fields – families experiencing poverty and families who speak English and/or Spanish at home
DATE:
TEAM MEMBERS: Tricia Zucker Cheryl McCallum Michael Assel Janelle Montroy Armando Orduna Gisela Trevino
resource evaluation Public Programs
This is the summative evaluation for the My Sky Tonight: Early Childhood Pathways to Astronomy is a National Science Foundation funded Full-Scale Development project that was designed to support informal science education practitioner’s ability to provide astronomy learning for young children ages 3-5 years. Based on prior research and assessment of the field, the project team identified that many informal educators lack the astronomy content, interpretive strategies, and confidence they need to effectively engage audiences of families with preschool-aged children. Three mechanisms were
DATE:
TEAM MEMBERS: Sasha Palmquist
resource evaluation Media and Technology
“Monkeying Around: Digital Media and Parent/Child Engagement Resources to Increase Preschool Computational Thinking” is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. WGBH, a leading producer of educational STEM media, developed prototypes of videos and hands-on activities around the project’s computational thinking learning goals for young children. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative
DATE:
TEAM MEMBERS: Heather Lavigne Leslie Cuellar
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.

The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tricia Zucker
resource research Media and Technology
Previous research has identified parental involvement—the ways parents and other caring adults interact with children in and outside of the home, and the kinds of learning materials with which parents surround children—as key to helping children develop knowledge and skills in literacy and math (Bassok, Finch, Lee, Reardon, & Waldfogel, 2016; Burgess, Hecht, & Lonigan, 2002; Niklas, Nguyen, Cloney, Tayler, & Adams, 2016; Sénéchal & LeFevre, 2002; Skwarchuk, Sowinski, & LeFevre, 2014). Parental support may be critical to children’s developing knowledge and understanding in science as well.
DATE:
TEAM MEMBERS: Megan Silander Todd Grindal Naomi Hupert Elisa Garcia Kea Anderson Philip Vahey Shelley Pasnik
resource research Public Programs
In this paper, we summarize the results of the two-year, National Science Foundation-funded Head Start on Engineering (HSE) project, designed to study and support engineering-related interest development for preschool children and their families from low-income backgrounds participating in Head Start. Low-income communities face ongoing barriers to accessing STEM learning resources and pursuing STEM-related careers. Quality family interventions in early childhood are a critical approach to addressing these barriers and have been shown to have long-term, positive impacts on families well beyond
DATE:
resource research Public Programs
In this article, The North American Association for Environmental Education (NAAEE) shares the programs and publications it developed to advance E-STEM—the integration of environmental education into STEM.
DATE:
TEAM MEMBERS: Kristen Kunkle