Skip to main content

Community Repository Search Results

resource project Public Programs
Stark inequities evident in the low representation of Black women in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) careers persist despite considerable investment in the diversification of the education-to-workplace STEMM pipeline. College participation rates of Black women measure 4-5% of all degrees in biological and physical sciences, 2-3% of degrees in computer science and math, and roughly 1% in engineering. Ultimately, Black women make up only 2.5% of the workforce in STEMM-related fields, indicating that they chronically experience stalled professional advancement. Because there are so few longitudinal studies in either formal or informal settings, educators and researchers lack critical insights into why BA/BS credentialed Black women drop out of STEMM careers at high rates upon entering the workforce. This Research in Service to Practice project will conduct a longitudinal examination of key professional outcomes and life trajectories among adult Black women who enrolled Women in Natural Sciences (WINS), a 40-year-old out-of-school time (OST) high school STEM enrichment program. Prior research on WINS documents that alumnae outperform national averages on all metrics related to STEMM advancement up through college graduation. This study will test the hypothesis that such success continues for these cohorts as they pursue life goals and navigate the workforce. Findings from this study will promote the progress of science, pivotal to NSF’s mission as the project builds knowledge about supportive and frustrating factors for Black women in STEMM careers. Strategic impact lies in the novel participant-centered research methods that amplify Black women’s voices and increase both accuracy and equity in informal STEM learning research.

This research probes the experiences of Black women at a critical phase of their workforce participation when BS/BA credentialed WINS alumnae establish their careers (ages 26-46). The team will conduct a longitudinal comparative case study of outcomes and life trajectories among 20 years of WINS cohorts (1995-2015). Research questions include (1) What do the life-journey narratives of WINS alumnae in adulthood reveal about influential factors in the socio-cultural ecological systems of Black women in STEMM? (2) What are the long-term outcomes among WINS women regarding education, STEMM and other careers, socio-economic status, and STEMM self-efficacy and interest? How do these vary? (3) What salient program elements in WINS are highlighted in alumnae narratives as relevant to Black women’s experiences in adulthood? How do these associations vary? (4) How do selected outcomes (stated in RQ2) and life story narratives among non-enrolled applicants compare to program alumnae? and (5) How do salient components in the WINS program associate with socio-cultural factors in regard to Black women’s careers and other life goals? Participants include 100 Black WINS alumnae as an intervention group and a matched comparison group of 100 Black women who successfully applied to the WINS program but did not or could not enroll. Measurable life outcomes and life trajectory narratives with maps of experiences from both groups will be studied via a convergent mixed methods design inclusive of quantitative and qualitative analyses. Comparisons of outcomes and trajectories will be made between the study groups. Further, associations between alumnae’s long-term outcomes and how they correlate their WINS experiences with other socio-cultural factors in their lives will be identified. It is anticipated that findings will challenge extant knowledge and pinpoint the most effective characteristics of and appropriate measures for studying lasting impacts of OST STEMM programs for Black women and girls. The project is positioned to contribute substantially to national efforts to increase participation of Black women in STEMM.
DATE: -
TEAM MEMBERS: Ayana Allen-Handy Jacqueline Genovesi Loni Tabb
resource project Public Programs
Science identity has been shown to be a necessary precondition to academic success and persistence in science trajectories. Further, science identities are formed, in large part, due to the kinds of access, real or perceived, that (racialized) learners have to science spaces. For Black and Latinx youth, in particular, mainstream ideas of science as a discipline and as a culture in the US recognize and support certain learners and marginalize others. Without developing identities as learners who can do science, or can become future scientists, these young people are not likely to pursue careers in any scientific field. There are demonstrable links between positive science identities and the material and social resources provided by particular places. Thus, whether young people can see themselves as scientists, or even feel that they have access to science practices, also depends on where they are learning it. The overarching goal of this project is to broaden participation of Black and Latinx youth in science by deepening our understanding of both science identities and how science learning spaces may be better designed to support the development of positive science identities of these learners. By deepening the field’s knowledge of how science learning spaces shape science identities, science educators can design more equitable learning spaces that leverage the spatial aspects of program location, culturally relevant curriculum, and participants’ lived experiences. A more expansive understanding of positive science identities allows educators to recognize these in Black and Latinx learners, and direct their continued science engagements accordingly, as positive identities lead to greater persistence in science. This project is a collaboration between researchers at New York University and those at a New York City informal science organization, BioBus. It is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This participatory design research project will compare three different formats, in different settings, of afterschool science programming for middle schoolers: one located in a lab space on the campus of a nearby university, one located in the public middle school building of participating students, and one aboard a mobile science lab. For purposes of this study, the construct of “setting” refers to the dimensions of geographic location, built physical environment, and material resources. Setting is not static, but instead social and relational: it is dynamically (co)constructed and experienced in activity by individuals and in interaction by groups of individuals. Therefore, the three BioBus programming types allow for productive comparison not only because of their different geographic locations, built environments, and material resources (e.g., scientific tools), but also the existing relationships learners may have with these places, as well as the instructional designs and pedagogical practices that BioBus teaching scientists use in each. This project uses a design-based research approach to answer the following research questions: (1) How do the settings of science learning shape science identity development? What are different positive science identities that may emerge from these relationships? And (2) What are ways to leverage different spatial aspects of informal science programming and instruction to support positive science identities? The study uses ethnographic and micro-analytic methods to develop better understandings of the relationships between setting and science identity development, uncover a broad range of types of positive science identities taken up by our Black and Latinx students, and inform informal science education to design for and leverage spatial aspects of programming and instruction. Findings will contribute to a systematic knowledge base bringing together spatial aspects of informal science education and science identity and identity development, and provide new tools for informal science educators, including design principles for incorporating spatial factors into program and lesson planning.
DATE: -
TEAM MEMBERS: Jasmine Ma Latasha Wright Roya Heydari
resource project Media and Technology
Increasing the diversity of the Science, Technology, Engineering, and Mathematics (STEM) workforce hinges on understanding the impact of the many related, pre-college experiences of the nation’s youth. While formal preparation, such as high school course-taking, has a major influence, research has shown that out-of-school-time activities have a much larger role in shaping the attitudes, identity, and career interests of students, particularly those who are members of groups historically underrepresented in STEM fields (Black, Indigenous, Latinx, and/or Pacific Islander). A wide range of both innovative adult-led (science clubs, internships, museum-going, competitions, summer camps) and personal-choice (hobbies, family talk, games, simulations, social media, online courses) options exist. This project studies the variety and availability such experiences to pre-college students. The project is particularly interested in how community cultural capital is leveraged through informal activities and experiences, drawing upon the “funds of knowledge” that culturally diverse students bring to their STEM experiences (e.g., high aspirations, multilingual facility, building of sustaining social networks, and the capacity to challenge negative stereotyping). This study has the capability to begin to reveal evidence-based measures of the absolute and relative effectiveness of promising informal educational practices, including many developed and disseminated by NSF-funded programs. Understanding the ecology of precollege influencers and the hypotheses on which they are based, along with providing initial measures of the efficacy of multiple pathways attempting to broaden participation of students from underrepresented groups in STEM majors and careers, will aid decision-making that will maximize the strategic impact of federal and local efforts.

The project first collects hypotheses from the wide variety of stakeholders (educators, researchers, and students) about the kinds of experiences that make a difference in increasing students’ STEM identity and career interest. Identifying the descriptive attributes that characterize opportunities across individual programs and validating a multi-part instrument to ascertain student experiences will be carried out through a review of relevant literature, surveying stakeholders using crowdsourced platforms, and through in-depth interviews with 50 providers. A sample of 1,000 students from 2- and 4-year college and universities, drawn from minority-serving institutions, such as Historically Black Colleges, Hispanic Serving Institutions, and Tribal Colleges and Universities will serve to establish the validity and reliability of the derived instrument and provide estimates of the availability and frequency of involvement. Psychometric methods and factor analysis will guide us in combining related variables into indices that reflect underlying constructs. Propensity score weighting will be employed for estimating effects when exposure to certain OST activities is confounded with other factors (e.g., parental education, SES). Path models and structural equation models (SEM) will be employed to build models that use causal or time related variables, for instance, students’ career interests at different times in their pre-college experience. The study goes beyond evaluation of individual experiences in addressing important questions that will help policy makers, educators, parents, and students understand which OST opportunities serve the diverse values and goals of members of underrepresented groups, boosting their likelihood of pursuing STEM careers. This project is co-funded by the Advancing Informal STEM Learning (AISL) and EHR CORE Research (ECR) programs.
DATE: -
TEAM MEMBERS: Philip Sadler Remy Dou Monique Ross Susan Sunbury Gerhard Sonnert
resource project Informal/Formal Connections
This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development. It responds to continuing concerns about racial and social inequities in STEM fields that begin to emerge in the early childhood years. The overarching goal of the project is to identify cultural strengths that support early science learning opportunities among Spanish-speaking children from immigrant Latin American communities, a population that is traditionally underrepresented in STEM educational and career pursuits. Building on a growing interest in the ways stories can promote early engagement in and understanding of science, this project will investigate the role of oral and written stories as culturally relevant and potentially powerful tools for making scientific ideas and inquiry practices meaningful and accessible for young Latinx children. Findings will reveal ways that family storytelling practices can provide accessible entry points for Latinx children's early science learning, and recommend methods that parents and educators can use to foster learning about scientific practices that can, in turn, increase interest and participation in science education and fields.

The project will advance knowledge on the socio-cultural and familial experience of Latinx children that can contribute to their early science learning and skills. The project team will examine the oral story and reading practices of 330 Latinx families with 3- to 5-year-old children recruited from three geographic locations in the United States: New York, Chicago, and San Jose. Combining interviews and observations, the project team will investigate: (1) how conversations about science and nature occur in Latinx children's daily lives, and (2) whether and to what extent narrative and expository books, family personal narratives, and adivinanzas (riddles) engender family conversations about scientific ideas and science practices. Across- and within-site comparisons will allow the project team to consider the immediate ecology and broader factors that shape Latinx families’ science-related views and practices. Although developmental science has long acknowledged that early learning is culturally situated, most research on early STEM is still informed by mainstream experiences that largely exclude the lived experiences of children from groups underrepresented in STEM, especially those who speak languages other than English. The proposed work will advance understanding of stories as cultural resources to support early science engagement and learning among Latinx children and inform the development of high quality, equitable informal and formal science educational opportunities for young children.
DATE: -
TEAM MEMBERS: Gigliana Melzi Catherine Haden Maureen Callanan
resource research Media and Technology
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
DATE:
TEAM MEMBERS: Diana Acosta Catherine Haden Kim Coin
resource research Public Programs
To advance justice, equity, diversity, and inclusion in science, we must first understand and improve the dominant-culture frameworks that impede progress and, second, we must intentionally create more equitable models. The present authors call ourselves the ICBOs and Allies Workgroup (ICBOs stands for independent community-based organizations), and we represent communities historically excluded from the sciences. Together with institutional allies and advisors, we began our research because we wanted our voices to be heard, and we hoped to bring a different perspective to doing science with
DATE:
TEAM MEMBERS: María Cecilia Alvarez Ricalde Juan Flores Valadez Catherine Crum John Annoni Rick Bonney Mateo Luna Castelli Marilú López Fretts Brigid Lucey Karen Purcell J. Marcelo Bonta Patricia Campbell Makeda Cheatom Berenice Rodriguez Yao Augustine Foli José González José Miguel Hernández Hurtado Sister Sharon Horace Karen Kitchen Pepe Marcos-Iga Tanya Schuh Phyllis Edwards Turner Bobby Wilson Fanny Villarreal
resource research Informal/Formal Connections
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource project Informal/Formal Connections
Early learning experiences for children have the potential to make a lasting impression on a young person, and ultimately influence their interests, school trajectories, and professional careers. As such, there has been an increasing effort to understand what can make these experiences more or less productive for young people, particularly in science, technology, engineering, and mathematics fields that face ongoing challenges related to workforce development. A better understanding of what happens during and after early engineering activities - and in particular, what contributes to a productive and engaging experience for children between the ages of 3 and 5 - can inform the design of new activities and potentially catalyze greater interest and learning about engineering at a young age. This study seeks to add new knowledge in this area by exploring how and why different elements of engineering activities for young children might be more or less effective for early learners. In addition, the study also examines engagement and interest related to engineering at the family level, acknowledging the essential roles that parents and families play in the overall development of young children. Finally, this study includes a specific focus on low-income and Spanish-speaking families, thereby engaging with communities that historically have less access to early science and engineering learning opportunities and remain persistently underrepresented in these fields. In order to maximize the impact of this research, findings from this study will be shared broadly with parents, educators, and researchers from multiple fields such as engineering education, child development, and informal/out-of-school time education.

This study has the potential to have a transformative impact on engineering education by developing both educational products and conceptual frameworks that advance the field's knowledge of how to effectively engage young learners and their parents/caregivers in meaningful and productive engineering learning experiences. This study seeks to break new ground at the frontiers of early childhood engineering, specifically through a) articulating and refining a new integrated conceptual framework that weaves together theories of learning and development with theoretical constructs from engineering design and b) applying and refining this integrated framework when creating, implementing, assessing, and revising components of family-based engineering activities for early learners, particularly those from low-income and Spanish-speaking families. Unlike many other early childhood engineering programs, this project focuses on the family context, which is the primary driver of learning and interest development at this age. The study therefore provides an opportunity to advance the field by both helping young children build engineering skills and interests before starting kindergarten while also empowering parents to support their children's engineering education at a critical developmental period. Additionally, by enhancing parent-child interactions and supporting a range of early childhood development goals, this project will also contribute to efforts to decrease the persistent kindergarten readiness gap across racial, ethnic, and socioeconomic groups. The research ultimately supports efforts to increase the diversity of individuals who will potentially enter the engineering workforce.
DATE: -
TEAM MEMBERS: Gina Navoa Svarovsky Amy Corbett Maria Perdomo Scott Pattison
resource research Informal/Formal Connections
In collaboration with Metropolitan Family Service (MFS), we conducted a three-year design-based research study to better understand how the characteristics of hands-on, home-based family engineering activities influence how preschool-age children and their parents engage in the engineering design process. Four themes emerged from the study: (1) Families used their imagination and activity narrative elements to set the design context, (2) Families evaluated and revised their solutions based on imagination-driven constraints, (3) Families creatively modified the design space, and (4) Imaginative
DATE:
TEAM MEMBERS: Scott Pattison Gina Navoa Svarovsky Amy Corbett Maria Eugenia Perdomo Smirla Ramos-Montañez Catherine Wagner Viviana López Burgos Sabrina De Los Santos
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

It has been well documented that under-resourced Latinx communities face persistent barriers to accessing quality STEM education and STEM careers, particularly in the field of engineering. For young children and their families from these communities, the development of executive function skills offers promising pathways to support educational success and prepare children to engage with STEM practices and content. Executive function skills, such as focusing attention, retaining information, and managing emotions are critical for children’s development and long-term success, and have been identified as central to engagement with STEM practices and content, whether in or out of school. However, much of the work on development of executive function skills to date has been conducted with White, middle-class children and has largely ignored the knowledge, values, or perspectives of other communities, including Latinx families. Similar gaps also exist in attention to culturally responsive approaches to using family-based STEM activities to support executive function skills. Taken together, there is a critical need to work with Latinx communities to re-imagine the intersection of STEM learning and executive function skills using equity-based frameworks. This Pilot and Feasibility project will develop and test a new participatory, dialogic method that leverages informal family engineering activities to support the development of executive function skills for preschool-age children from Latinx families. The combination of this proposal’s unique engagement of parents as research partners with the study of engineering and executive functions could lay the foundation for a promising program of future equity-focused research.

Three research questions will guide the study: 1) What knowledge, assets, and practices already exist within Latinx families related to these executive function skills? 2) What aspects of executive function skills can be supported through informal family engineering activities? and 3) What are promising design strategies for adapting informal family engineering activities to highlight family assets and support executive function skills for young children? To address these questions, the project team will engage Latinx parents in a dialogue series in which parents are central collaborators, sharing their in-depth perspectives and partnering with researchers to develop conceptual frameworks and new approaches. Data generated through these ongoing discussions will be analyzed using (a) qualitative, participatory approaches, including iterative co-development and refinement of emergent themes with parents, (b) detailed inductive coding of parent dialogue group discussions using grounded theory techniques, and (c) retrospective analysis at the end of the project. The parent dialogue series will be supported by a systematic literature review examining the intersections between engineering design, executive function, and the strengths and assets within Latinx families. The results of the exploratory research will include a (1) conceptual framework co-developed with parents that highlights promising opportunities and design strategies for using family engineering design activities to support executive function skills for preschool-age children from Latinx families and (2) research agenda outlining questions and priorities for future work that reflect the goals and interests of this community. Aligned with project’s equity approach, the team will work collaboratively with project partners and families for dissemination, focusing on amplifying community voices, sharing challenges and successes, and supporting improvements in the local community. Results will also be broadly shared with educators and researchers to advance knowledge and promote new equitable approaches to collaborating with parents from Latinx communities.

This Pilots and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Smirla Ramos-Montañez Scott Pattison Shauna Tominey
resource project Public Programs
This project will draft a framework to guide citizen science projects in addressing issues of equity, diversity, and inclusion (EDI). Citizen science, sometimes called community science, involves volunteers who use science research procedures to collect valid scientific data for research projects and who often learn much about science in the process. These projects contribute directly to scientific research and often collect data of direct relevance to many communities. Although there are millions of citizen science volunteers, only a small proportion come from marginalized communities. The project will host a series of six, half-day virtual (online) workshops with scholars and practitioners with deep understanding of the participatory sciences and issues related to EDI. Workshop participants will discuss topics relevant to preparing a framework to provide guidance for integrating support EDI practices in citizen science. The project will disseminate the framework and workshop recommendations through publications for researchers and practitioners, a new website that will serve as a hub for relevant resources and EDI professional development, blogposts, and webinars.

This project will focus on EDI issues in institution-led, large-scale, citizen science projects. The project will organize workshops addressing issues relating to: (1) designing multipurpose projects that can be useful for empowering communities with data addressing community needs, providing researchers a large and robust data set, and providing learners with opportunities to develop a deeper understanding of research; (2) developing diverse leadership and engaging marginalized communities in framing research priorities; and (3) supporting strategies across citizen science projects to address barriers to participation, identity professional development needs, and create inclusive models that foster trust, create supportive networks, and build capacity for EDI in citizen science. The workshop will include approximately 20 participants, including researchers, project leaders and practitioners, with a majority of workshop participants belonging to groups underrepresented in science, such as Black, Hispanic, and Indigenous people.
DATE: -
TEAM MEMBERS: Caren Cooper
resource project Media and Technology
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.

The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Mark Warschauer Silvia Lovato Andres Bustamante Abby Jenkins Ying Xu