Skip to main content

Community Repository Search Results

resource project Exhibitions
Escape rooms are an engaging and increasingly popular game format in which a team of players is “locked” in a room and challenged to solve a series of narrative-embedded puzzles encoded in the room’s artifacts in order to “escape” within a set period of time. The University of California Museum of Paleontology, with partners University of Kansas Natural History Museum and the California Academy of Sciences, aim to develop, evaluate, and disseminate a “serious game” (i.e., a game designed for a purpose other than entertainment) based on the escape room model. Our traveling/loanable pop-up escape room and associated extension activities will engage diverse families (ages 8 and up) in museums and libraries in solving a biomedical mystery that teaches fundamental concepts in biology, engages critical-thinking and collaboration skills, and stimulates interest in biomedical careers. STEM Escape will address NGSS-aligned content central to medical research – in particular, it will communicate basic concepts regarding evolutionary relationships, a topic with relevance to a wide variety of medical applications, such as determining the source of emerging infectious diseases, tracking the progression of disease within a host, and identifying new medicines. The project is designed to lay the groundwork for extended family interactions surrounding scientific content and biomedical careers. The immersive game will be supplemented by a set of solo and docent-led follow-up activities that reinforce key concepts and emphasize connections between players’ experience in the game and biomedical research careers. Learners will also receive takeaway media (e.g., activity book) that highlights a diverse set of NIH-funded researchers whose work directly relies on evolutionary patterns/processes. Caregivers will have the option of receiving a follow-up email with free at-home activities. The themed inflatable pop-up room will be wheelchair-accessible and all materials will be bilingual in English and Spanish. The STEM Escape experience will be developed with and for the diverse audiences visiting urban/suburban natural history museums and libraries, as well as with and for rural families, whom we will reach through rural libraries. The project will also produce and evaluate a suite of support materials to facilitate institutional adoption and deployment of the experience. Nine host sites across the country have committed to hosting the room (with an additional two sites in the planning stages), and after the life of the grant, the room will continue to make an impact as a rentable traveling exhibit. Long term, this project will improve the public’s understanding of medically relevant evolutionary content, increase interest in biomedical careers, particularly among underserved groups targeted, and improve our understanding of how immersive games can be used to serve educational objectives.
DATE: -
TEAM MEMBERS: Lisa White
resource project Public Programs
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.

This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Powell Marc Stern Brandon Frensley
resource project Informal/Formal Connections
Cities are facing new demands as their urban populations rapidly grow. Smart City initiatives are being developed to address issues of mobility, infrastructure, security, and safety, while enhancing the quality of life of citizens. One-size-fits-all solutions are not viable. Instead, the diversity of a city's residents, including life experiences, cultural backgrounds, needs, and behaviors, must be taken into account to achieve transformative, citizen-centered solutions. Engineers, scientists, policy makers, entrepreneurs, and thought leaders must be prepared to tackle future Smart City challenges, and address knowledge barriers in understanding the needs of citizens across age, occupation, financial standing, disability, and technology savviness. This National Science Foundation Research Traineeship (NRT) award to the Arizona State University addresses this need by training the next generation of MS and PhD students for careers in Smart Cities-related fields. The project anticipates training thirty-eight (38) MS and PhD students, including twenty-four (24) funded trainees, from the following degree programs: Human and Social Dimensions of Science and Technology; Public Affairs; Computer Science; Civil, Environmental, and Sustainable Engineering; Mechanical & Aerospace Engineering; and Applied Engineering Programs. In addition to trainees, it is envisioned that over 300 other MS and PhD students in STEM disciplines will participate in opportunities made available through this traineeship. The knowledge and technologies developed from this project will contribute toward improving the quality of life for all of society through interdisciplinary, citizen-centered Smart City solutions.

An integrated education-research-practice model focused on the technological, societal, and environmental research aspects of citizen-centered solutions for Smart Cities will be employed to instill trainees with transdisciplinary skills and knowledge through cross-disciplinary courses; experience with leading collaborative, use-inspired research projects; applied learning through internships with partners and teaching opportunities; research experiences through service learning and leadership; and entrepreneurial education. Trainees will pursue research thrusts in Citizen-Centered Design; Smart City Infrastructure and Dynamics; and Socio-Environmental Practices and Policies. These thrusts are embedded in integrative priority application areas of Transportation and Accessibility; Safety, Security, and Risk Reduction; and Engagement and Education. Research efforts will significantly advance data-enabled citizen engagement; urban informatics; Internet-of-Things technologies; inclusion and accessibility; urban infrastructure; transportation systems; cybersecurity; swarm robotics; urban sustainability; quality of life and equity for citizens; hazards management and risk reduction; and societal concerns and ethics of emerging Smart City technologies. Focused efforts will be made to recruit underrepresented minorities, women, and individuals with disabilities, in order to tap underutilized talent, equip them to address the needs of their communities, and increase involvement of these groups in Smart Cities-related fields.

The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Ram Pendyala Cynthia Selin Ann McKenna Troy McDaniel Gail-Joon Ahn Sethuraman Panchanathan
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.

The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
DATE: -
TEAM MEMBERS: Darryl Williams Karen Peterson Lynn Dierking Tara Cox Julia Skolnik Scott Pattison