Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
As science communication programs grow worldwide, effective evaluation and assessment metrics lag. While there is no consensus on evaluation protocols specifically for science communication training, there is agreement on elements of effective training: listening, empathy, and knowing your audience — core tenets of improvisation. We designed an evaluation protocol, tested over three years, based on validated and newly developed scales for an improvisation-based communication training at the Alan Alda Center for Communicating Science. Initial results suggest that ‘knowing your audience’ should
DATE:
TEAM MEMBERS: Christine O’Connell Merryn McKinnon Jordan Labouff
resource research Public Programs
Computing fields are foundational to most STEM disciplines and the only STEM discipline to show a consistent decline in women's representation since 1990, making it an important field for STEM educators to study. The explanation for the underrepresentation of women and girls in computing is twofold: a sense that they do not fit within the stereotypes associated with computing and a lack of access to computer games and technologies beginning at an early age (Richard, 2016). Informal coding education programs are uniquely situated to counter these hurdles because they can offer additional
DATE:
TEAM MEMBERS: Roxanne Hughes Jennifer schellinger Kari Roberts
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis
resource research Professional Development, Conferences, and Networks
With support from the National Science Foundation, the STEM Effect project was undertaken in partnership by staff from the Education Development Center, the National Girls Collaborative Project (NGCP) and the Intrepid Sea, Air & Space Museum. Through a variety of methods, the project convened representatives from cultural institutions (museums, science centers, zoos, botanical gardens and aquaria) from across the country which provide STEM programming aimed at increasing the participation of girls and women in science, technology, engineering and mathematics (STEM), along with researchers, and
DATE:
TEAM MEMBERS: Lynda Kennedy Babette Moeller Alicia Santiago Sheri Levinsky-Raskin Wendy Martin Karen Peterson Goodman Research Group
resource project Professional Development, Conferences, and Networks
The National Science Teachers Association will convene a conference that will bring together STEM researchers and practitioners to review the growing connected science learning movement. A connected science learning environment has been described as a robust science ecology containing a wide variety of programs, across a range of institutions and places, allowing youth different and multiple ways to engage with STEM. Such environments can include small partnerships, such as a science museum and K-12 schools, or a large, community-wide network of a variety of organizations such as K-12 schools, museums, universities, government agencies, and community organizations. The conference will bring together over forty participants, who will meet in a series of several online meetings. The conference will result in a series of papers, articles in the online Connected Science Learning journal and other publications, a series of webinars and online forums where participants can engage with themes identified in the conference, and conference presentations at the annual meetings of organizations including the National Science Teachers Association, the Association of Science-Technology Centers, and others. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The conference will: (1) document the research foundation that supports and demonstrates the impact and value of high-quality connected science learning experiences; (2) identify areas for which future research is recommended; and (3) provide effective, practitioner-focused resources that advance connected STEM learning. The conference will include participants that represent a wide range of researchers and practitioners in informal and formal STEM education, as well as representing gender, racial/ethnic and geographical diversity. The results and products of the conference will be instrumental in developing the understanding and appreciation for connecting STEM learning and ultimately improving connected STEM learning for K-12 youth. The importance of emphasizing diversity, equity, and accessibility will be strongly represented in the key evidence identified through the conference and will be reflected in the resources that will be disseminated to a broader audience.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Beth Murphy
resource research Public Programs
Background. STEM identity has emerged as an important research topic and a predictor of how youth engage with STEM inside and outside of school. Although there is a growing body of literature in this area, less work has been done specific to engineering, especially in out-of-school learning contexts. Methods. To address this need, we conducted a qualitative investigation of five adolescent youth participating in a four-month afterschool engineering program. The study focused on how participants negotiated engineering-related identities through ongoing interactions with activities, peers
DATE:
resource research Public Programs
Informal STEM field trip programming is a large, yet under-researched area of the education landscape. Informal STEM education providers are often serving a more privileged section of society, leading to a risk of perpetuating inequalities seen throughout the education landscape. In an attempt to address the lack of research, this thesis explores the relationship between educational equity and informal STEM field trips. The intention was to collect data using a critical ethnography approach to the methods of qualitative questionnaire and interviews of informal STEM educators. A change in
DATE:
TEAM MEMBERS: Sal Alper
resource evaluation Professional Development, Conferences, and Networks
For the SciGirls Strategies supplemental activity, ten educators were trained to be SciGirls Strategies trainers during June 2019. During that time, they developed action plans for their local teacher training. The goal was for each Trainer to train ten or more teachers in their local schools/districts. Trainers could plan and schedule their workshops to fit their local context in order to accomplish the objectives of building teacher’s confidence and skills in using gender equitable and culturally responsive teaching strategies. After the training workshop, the trainers met once a month
DATE:
TEAM MEMBERS: Hilarie Davis
resource evaluation Professional Development, Conferences, and Networks
For the SciGirls Strategies project supplement, ten educators were trained to be SciGirls Strategies Trainers through a four-day in person workshop in June 2019. During the workshop, educators learned about the Gender Equitable Teaching and Advising Strategies (GETAS) course content, the research-based SciGirls Strategies framework and instructional strategies and began to develop plans for their localized professional development for STEM and CTE educators. The goal of the Train-the-Trainer program was for each Trainer to train 10 teachers in their school and/or school district. Trainers
DATE:
TEAM MEMBERS: Hilarie Davis
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Public Programs
The project will develop and research the ways in which maker education activities can be leveraged to support intergenerational learning in hyper-vulnerable populations, such as families with an incarcerated parent. Maker education is often linked to STEM learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Research has shown that maker education activities support STEM learning and creativity, the development of STEM identities and dispositions, and create pathways towards STEM careers. The project will develop a series of project activities including bringing Science, Technology, Engineering, and Mathematics (STEM) learning experts to a women's minimum-security facility for lectures on research and a set of workshops exploring maker activities for the incarcerated women and their children. By researching trauma-informed maker practices for families with an incarcerated parent, the project will develop research findings related to and practical resources for supporting these practices in other informal STEM learning contexts.

While evidence shows that maker pedagogy can be effective in supporting STEM learning for diverse populations, little is known about how it might support STEM learning for incarcerated women and their children. The project will investigate: (1) the everyday STEM practices of incarcerated women and their children and how these practices can be supported and extended through maker activities; (2) how incarcerated women and their children are perceived with respect to STEM and the impact these perceptions have on developing STEM identities; and (3) what design principles for developing STEM learning emerge through the project research. Program activities and related research will be designed and researched through the collaboration of incarcerated women, university researchers from the project university partners, the Saint Louis University Prison Program, and the Federal Correctional Institution-Camp (Greenville Women's Minimum Security Facility). The project will use Social Design Experimentation (SDE) as the primary research method, which is used to design and study education interventions on site. SDE is unique in that participants, researchers and other stakeholders collaborate to meet the goals of the project and related research. Project deliverables, which will be widely disseminated to researchers and educators, will include articles in peer-reviewed and educator publications, strategies and design principles for developing maker education opportunities for hyper-vulnerable populations, and practical recommendations for a maker kit to facilitate STEM maker education activities and family interaction.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Cynthia Graville
resource project Media and Technology
Science television shows are an important source of informal learning and enrichment for preschool-aged children. However, one limitation of television programming is that it is largely a one-way, non-interactive medium. Research suggests that children learn best through active engagement with content, and that parents can make TV watching more interactive by co-viewing and talking with their children. However, many parents and other adults may lack the time or experience and comfort with science language and content to provide critcial just-in-time support for their children. This study seeks to take advantage of recent advances in artificial intelligence that now allow children to enjoyably interact with automated conversational agents. The research team will explore whether such conversational agents, embedded as an on-screen character in a science video, can meaningfully interact with children about the science content of the show by simulating the benefits of co-viewing with an adult. If successful, the project could lay the foundation for a new genre of science shows, helping transform video watching into more interactive and engaging learning experiences. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project will develop interactive videos incorporating a conversational agent in three 11-minute episodes of a future children's animated television program. The videos will enable children to speak with the main character of the show as the character solves everyday science mysteries, thus priming children to engage in observation, prediction, pattern finding, and problem solving through scaffolded conversation. This study will be carried out in two iterative cycles with the goal of developing and testing the embedded conversational function for each episode. In each cycle, the project team, which includes experts in children's TV production, as well as educational and HCI researchers will develop the storyboard and conversation prompts and follow-ups, create animated videos based on the revised script, and create a mobile application of the interactive video integrated with the conversational agent. Field testing with 10 children will be conducted to iteratively improve the embedded conversational function. In the pilot testing stage, a controlled study will be conducted with 30 children in each group (N=120): 1) watching the episode with the embedded conversational function; 2) watching the episode with a human partner carrying out the dialogue in the script rather than the virtual character; 3) watching the episode with pseudo-interaction, in which the animated character asks questions but does not attempt to understand or personally respond to children's answers; and 4) watching the episode with no dialogue. Data collected from the experiments will be used to examine whether and in what ways use of a conversational agent affects children's engagement, attention, communication strategies, perceptions, and science learning, and whether these effects vary by children's age, gender, socioeconomic status, language background, and oral language proficiency in English. The project will provide a comprehensive evaluation of the feasibility and potential of incorporating conversational agents into screen media to foster young children's STEM learning and engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Warschauer Daniel Whiteson Sara DeWitt Andres Bustamante Abby Jenkins