Skip to main content

Community Repository Search Results

Current Search

resource project Public Programs
San Francisco Health Investigators (SF HI), developed and led by the Science & Health Education Partnership at UC San Francisco, will use a community-based participatory research model to provide authentic research experiences for high school students, the majority from backgrounds underrepresented in the sciences.

SF HI will:
1) Develop a community of high school Student Researchers who will conduct research into health issues in their communities, study how adolescents respond to health messages, create new health messages informed by this research, and study the broader impacts of the materials they develop.
2) Partner with educational researchers to research the effects of SF HI on the high school student participants and the impact of the materials on the broader community.
3) Disseminate those materials shown to have the greatest impact nationally.
4) Publish results on the public understanding and awareness of health issues in peer-reviewed journals and other forums to inform and advance the field of public health.

The SF HI model is designed to leverage students’ cultural and technological knowledge and their social capital in the role of Student Researchers as they study the awareness, knowledge and attitudes about current health issues in their communities. It will have a broad range of impacts. Over the course of the project, 100 urban public high school students will be immersed in research projects that have the potential to directly benefit the health of their communities. These Student Researchers will design health messages informed by their social, cultural, and community knowledge and by their research results. They will collectively survey more than 8,500 community members – their peers, neighbors, and attendees at public gatherings to assess the effectiveness of these materials. Student-developed materials will be distributed broadly via the web, high school and college wellness centers, the NIH SEPA community, and other networks – thus these materials have the potential to reach over 1.5 million adolescents and young adults over the life of the project.
DATE: -
TEAM MEMBERS: Rebecca Smith Katherine Nielsen
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource project Media and Technology
The National Association of Hispanic Nurses (NAHN), in association with the Hispanic Communications Network (HCN), proposes to address the shortage of bilingual professionals in all health fields by recruiting and interviewing bilingual role models and arranging to broadcast those interviews nationwide. Leveraging HCN’s nationally broadcast health education radio shows, whose cumulative audiences are larger than
NPR’s “All Things Considered,” this project has the potential to reach one out of every three US Hispanics during its first five years. This media campaign is intended to inspire Hispanic parents to encourage their children to study science and aspire to careers in the biomedical professions. It is also intended to inspire and empower Spanish-speaking adults from all walks of life to consider careers in the health professions. All broadcasts will tie to NAHN’s interactive website so that students and adults interested in changing careers can find mentors and educational resources. NAHN will also use Youtube, Facebook, mobile phone applications, and other new and popular social media technologies to reach a broad cross-section of English speaking youth and young adults. In addition to the national media outputs, attendees at NAHN’s annual conferences will have the opportunity to receive training in public speaking and media relations so they can more effectively use local media in their own communities to address health disparities and promote careers in the biomedical and health professions. NAHN will develop a standardized, bilingual Toolkit for public presentations. The Toolkit will include a PowerPoint presentation embedded with video containing gender and other- stereotype-busting role model interviews with Hispanic nurses; links to an online database of volunteer mentors; and a bilingual terminology packet that will aid nurses in creating linguistic and cognitive bridges between audience and professional knowledge bases. We expect that the refined Toolkit will empower nurses and other health professionals to become more effective public health educators and career role models during their presentations at community health events, career fairs, achievement clubs, and school assemblies. An Advisory Committee of other health organizations, professionals, and advocates will recommend Role Models and provide periodic feedback. Bilingual independent evaluators associated with the UC Berkeley School of Public Health will conduct qualitative and quantitative formative, iterative, and summative evaluations throughout the project. Their recommendations and findings will be incorporated into the project design and deliverables and shared with relevant fields.
DATE: -
TEAM MEMBERS: Angie Millan Jim Booth
resource project Media and Technology
Hexacago Health Academy (HHA) is a game-based science and health curriculum intervention. HHA engages high school students in learning about and addressing major sexual and reproductive health issues and risk behaviors. A board game, Hexacago, depicting the city of Chicago with an overlay of hexagons is the cornerstone of HHA. Students use the board design games and think critically about public health problems in the city of Chicago. HHA uses game-play, interaction with STEM science and health professionals, and mentoring to create a rich, game-based learning experience for high school students. The object of HHA is to improve academic performance, increase science and health career interest, and improve health behaviors among youth living in Chicago.
DATE: -
TEAM MEMBERS: Melissa Gilliam Patrick Jagoda
resource project Public Programs
The goal of the Hawaii Science Career Inspiration grant (HiSCI) is to enhance science education resources and training available to teachers and students in disadvantaged communities of Hawaii in order to ensure a maximally large and diverse workforce to meet the nation’s biomedical, behavioural and clinical research needs. The HiSCI Program will build on the knowledge gained from two past SEPA grants and the University of Hawaii Center for Cardiovascular Research and leverage resources from all corners of the state to accomplish four specific aims:

1) Increase student interest and exposure to health science careers by providing multiple science exposure opportunities and mentoring along the primary, intermediate, and secondary school experiences for at least 300 students a year and a printed and web-based STEM career resource guide and career posters to alert students, counsellors and teachers to all available opportunities;

2) Provide professional development for 20 middle and high school teachers a year, to include scientific content and foster an understanding of the scientific research process, in addition to medical students mentoring intermediate and high school students;

3) Listen, respond to, and connect the science teacher community in Hawaii by holding innovative listening groups for teachers across the state; and

4) Provide tools and supplies for at least twenty K-12 classrooms a year through a mini-grant process and alert teachers across the state to free resources both locally and nationally. The HiSCI Program is highly relevant to Hawaii’s public health and science infrastructure as it will provide an innovative way to gain knowledge of science training needs and will provide many of the resources to teachers and students across the state by leveraging, communicating and sharing existing resources.
DATE: -
TEAM MEMBERS: Kelley Withy Rachel Boulay
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Public Programs
Our goal is to attempt the identification of Sevengill sharks (Notorynchus cepedianus) that may be returning to San Diego from year-to-year, using the pattern recognition algorithm provided in ‘Wildbook,’ a web-based application for wildlife data management, designed by Jason Holmberg. 'Wildbook' which has been successfully used to ID Whale Sharks (Rhincodon typus ) by their spotting patterns.

Sevengill sharks (Notorynchus cepedianus), are currently listed as Data deficient (DD) on the IUCN Red List: "This assessment is based on the information published in the 2005 shark status survey (Fowler et al. 2005).
DATE: -
TEAM MEMBERS: Heather Moncrief Michael Bear
resource project Public Programs
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:

1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.

2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.

3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE: -
TEAM MEMBERS: Julia Kennard
resource project Professional Development, Conferences, and Networks
Understanding the Sun Through NASA Missions. The Maryland Science Center (MSC) initiative is targeted to rural educators and library patrons in Maryland, Virginia and West Virginia. The Maryland Science Center is lead partner collaborating with Prince George’s County, Maryland Public Schools and its Howard B. Owens Science Center, and with NASA Goddard Space Flight Center to develop Educator Workshops and library exhibits for the Maryland counties of Cecil, Kent and Washington and NASA Wallops Visitor Center (Virginia) and NASA’s Independent Verification and Validation (IV&V) Center (West Virginia). The project will make participants aware and better informed of NASA Heliophysics science and NASA missions studying the Sun. Participants in the programs will come to a better understanding of the Sun, space weather, and the Sun’s far-reaching influence on our planet and the rest of the Solar System. Educators will be better prepared to teach students using NASA-developed hands-on materials demonstrated and provided in the workshops, as well as Sun Spotters and Solar Scopes to examine solar surface features, helping to engage them and their students in better understanding our closest star. Rural libraries patrons will encounter NASA mission science, and MSC visitors will acquire better comprehension of the Sun. All participants will come away with a renewed appreciation of our Sun and how it works, its variability, its ongoing effects on our planet, the nature of the scientific study of the Sun, and how and why NASA is exploring the Sun with its current missions.
DATE: -
TEAM MEMBERS: Van Reiner
resource project Media and Technology
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
DATE: -
TEAM MEMBERS: Alan Winick
resource project Media and Technology
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
DATE: -
TEAM MEMBERS: Kara Libby
resource project Public Programs
Portal to the Public: Expanding the National Network (PoP: ENN) is implementing around the county the successful NSF-funded Portal to the Public model in which researchers are trained to communicate and interact with the general public at informal science education (ISE) institutions about the research that they are conducting. The project, which follows on a thorough evaluation of the model at eight sites and current implementation at an additional fifteen sites, will incorporate twenty new ISE sites into the growing network, provide training and mentorship to ISE professionals on the use and adaptation of the PoP implementation manual and toolkits, and develop an enhanced network website that will serve as a communication and innovation hub. The work is responsive to the needs and activities of ISE organizations which continue to expand their missions beyond presenting to the public established science, technology, engineering and math (STEM) and are working to become places where visitors can also experience the process and promise of current research via face-to-face interactions with researchers. The project is expanding both the kind and number of institutions involved around the country and is facilitating their capacity to develop a knowledge base, share experiences and best practices.
DATE: -