Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will research and develop the Circuit, a mobile phone and web-based application that will empower families and the general public to discover the broad spectrum of informal Science, Technology, Engineering and Mathematics (STEM) opportunities that exist in most communities. These informal STEM resources include science and children's museums, science and computer camps, maker spaces, afterschool programs, citizen science and much more. There is currently no "one-stop" searching for these resources. Instead, participants must conduct multiple, inefficient Internet searches to find the sought for STEM resources. The Circuit will enable users to efficiently search a rich informal STEM database, identifying resources by location, geography, age levels, science discipline, type of program and other factors. The Circuit builds on SciStarter, an existing online platform that connects thousands of prospective and active citizen scientists to citizen science projects. SciStarter has made possible the collection and organization of several thousand citizen science projects that would otherwise be scattered across the web. The Circuit will build on SciStarter's technical achievements in the citizen science sector, while systematically encompassing the offerings of established national networks. By integrating existing networks of informal STEM resources, the app will afford the public with unrivaled access to informal STEM opportunities, while collecting data that reveals patterns of engagement towards understanding factors of influence between different types of STEM experiences.

The app will provide researchers with new opportunities for researching how families and adults participate in the ecosystem of informal STEM resources in their communities. The Circuit will develop web tools to aggregate and organize digital content from trusted, currently siloed, informal STEM networks of content providers. These include science festivals, science and children's museums, the American Association for the Advancement of Science (AAAS), and Discover Magazine (3 million readers), the largest general interest science publication. Each content partner will feed the app with information directly or through their membership and encourage adoption of The Circuit within their respective communities. The project will design digital tools, including APIs (application program interfaces) to acquire and share digital content, embeddable tools to record and analyze data about movement, engagement, and persistence across domains, and social media tools and related APIs to distribute, track, and analyze content, engagement and demographics. (An API is a code that allows two software programs to communicate with each other.) The project will conduct small-scale, proof-of-conduct studies, to test the viability of the platform to support future, independent full-scale research. An analytics dashboard will be designed and tested with partners, researchers, and evaluators to ensure access to data on patterns of visits, clicks, referrals, searches, "joins," bookmarks, shares, contributions, user-locations, persistence, and more, within and across domains. Because each partner will feed their analytics into the shared dashboard, this will provide unprecedented and much-needed data to advance research in informal STEM learning. The Circuit will allow the tracking of patterns of engagement across networks and programs. Anonymized analytics of behavioral data from end users of The Circuit will support new approaches to advance evidence-based understanding of connected informal STEM learning by exhibiting engagement patterns across informal STEM domains. Through volunteer participation by the public, the Circuit will explore the geographic and demographic patterns of participants in the system, and derive important design lessons for its own and future efforts to create curated systems of connected learning across STEM education in informal settings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Media and Technology
Polar Literacy: A model for youth engagement and learning will foster public engagement with polar science. The project targets middle-school aged underserved youth and polar research scientists, with the goal to increase youth interest in and understanding of Polar Regions, and to hone researchers' science communication skills. The project will develop affordable and replicable ways of bringing polar education to informal learning environments, extend our understanding of how polar education initiatives can be delivered to youth with maximum effect, and design a professional development model to improve the capacity for Polar Region researchers to craft meaningful broader impact activities. Polar Literacy will create and test a model which combines direct participation by scientists in after-school settings, with the use of curated polar research data sets and data visualization tools to create participatory learning experiences for youth. Beyond the life of the project funding, many of the project deliverables (including kits, videos, and other resources) will continue to be used and disseminated online and in person through ongoing work of project collaborators.

Polar Literacy: A model for youth engagement and learning will advance the understanding of informal learning environments while leveraging the rich interdisciplinary resources from polar investments made by the National Science Foundation (NSF). The project's key audiences -- polar researchers, informal educators, and out-of-school time (OST) youth in grades 4-7 (ages 9-13) -- will connect through both place-based and internet-based experiences and work collaboratively to generate a flexible, scalable, and transferable education model. The project will 1) design OST kits and resource guides (focused on Polar Literacy Principles) and include "Concept in a Minute" videos designed to highlight enduring ideas, 2) provide professional development for informal educators, 3) synthesize a club model through adaptation of successful facets of existing informal learning programs, and 4) create Data Jam events for the OST Special Interest (SPIN) clubs and camp programs by modifying an existing formal education model. A research design, implemented at four nodes over three years, will answer three research questions to evaluate the impact of professional development on informal educators, as well as the impact of programs on youth, and the effectiveness of the model. In addition to the project team and collaborators who are informal education practitioners, an advisory board composed of experts in youth programming, informal education, and evaluation will guide the project to ensure that it advances the body of informal STEM learning research.

Polar Literacy is an Advancing Informal STEM Learning (AISL) Innovations in Development project in response to the Dear Colleague Letter: Support for Engaging Students and the Public in Polar Research (NSF 18-103). Polar Literacy is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. This project has co-funding support from the Antarctic section of the Office of Polar Programs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Janice McDonnell Oscar Schofield Charles Lichtenwalner Jason Cervenec
resource project Media and Technology
Despite the ubiquity of Artificial Intelligence (AI), public understanding of how it works and is used is limited This project will research, design, and develop innovative approaches focusing on Artificial Intelligence (AI) for under-represented youth ages 14-24. Program components include live social media chats with AI leaders, app development, journalistic investigations of ethical issues in machine learning, and review of AI-based consumer products. Youth Radio is a non-profit media and tech organizations that provides youth with skills in STEM, journalism, arts, and communications. They engage 250 youth annually through free after-school classes and work shifts. Participants are 90% youth of color and 80% low income. Project partners include the MIT Media Lab which developed App Inventor which allows novice users to build fully functional apps. Staff from Google will serve as a project advisor on the curriculum. The project has exceptional national reach through the dissemination of its media and apps through national outlets such as NPR and Teen Vogue as well as various platforms including online, on-air, as well as presentations, publications, and training tools. The project broadens participation by engaging these low income youth of color in developing skills critical to the workforce of the future. It will help prepare an upcoming generation of Artificial Intelligence creators, users, and consumers who understand the technology and embrace and encourage its potential.It will give them the necessary knowledge and opportunities for careers in an AI-driven future.

This project is grounded in sociocultural learning theory and practice and is interdisciplinary by design. The theoretical framework holds that Computational Thinking plus Critical Pedagogy leads to Critical Computational Literacy. Also, Digital Age Civics plus Participatory Culture leads to Civic Imagination helping youth build a better world through technology. The driving research questions include: What do underrepresented youth understand about AI and its role in society? What are the ethical dilemmas posed by AI from their vantage point? What are the features of an engaging ethics-centered pedagogy with AI? What impact do the AI products developed by the youth have on the target audience? The research design will use ethnographic techniques and design research to study and analyze youth learning. Data sources will include baseline surveys, audio recordings and transcriptions from learning sessions with the participants, research analytic memos, focus group interviews, student-generating artifacts of learning and finished products, etc. The design-based approach will enable systematic, evidence-based iteration on the initiative's activities, pedagogical approach and products. An independent summative evaluation will provide complementary data and perspective to triangulate with the research findings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Media and Technology
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.

This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Whitney Owens
resource project Media and Technology
Increasingly, scientists and their institutions are engaging with lay audiences via media. The emergence of social media has allowed scientists to engage with publics in novel ways. Social networking sites have fundamentally changed the modern media environment and, subsequently, media consumption habits. When asked where they primarily go to learn more about scientific issues, more than half of Americans point to the Internet. These online spaces offer many opportunities for scientists to play active roles in communicating and engaging directly with various publics. Additionally, the proposed research activities were inspired by a recent report by the National Academies of Sciences, Engineering, and Medicine that included a challenge to science communication researchers to determine better approaches for communicating science through social media platforms. Humor has been recommended as a method that scientists could use in communicating with publics; however, there is little empirical evidence that its use is effective. The researchers will explore the effectiveness of using humor for communicating about artificial intelligence, climate science and microbiomes.

The research questions are: How do lay audiences respond to messages about scientific issues on social media that use humor? What are scientists' views toward using humor in constructing social media messages? Can collaborations between science communication scholars and practitioners facilitate more effective practices? The research is grounded in the theory of planned behavior and framing as a theory of media effects. A public survey will collect and analyze data on Twitter messages with and without humor, the number of likes and re-tweets of each message, and their scientific content. Survey participants will be randomly assigned to one of twenty-four experimental conditions. The survey sample, matching recent U.S. Census Bureau data, will be obtained from opt-in panels provided by Qualtrics, an online market research company. The second component of the research will quantify the attitudes of scientists toward using humor to communicate with publics on social media. Data will be collected from a random sample of scientists and graduate students at R1 universities nationwide. Data will be analyzed using descriptive statistics and regression modeling.

The broader impacts of this project are twofold: findings from the research will be shared with science communication scholars and trainers advancing knowledge and practice; and an infographic (visual representation of findings) will be distributed to practitioners who participate in research-practice partnerships. It will provide a set of easily-referenced, evidence-based guidelines about the types of humor to which audiences respond positively on social media.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sara Yeo Leona Yi-Fan Su Michael Cacciatore
resource project Media and Technology
This project aims to broaden participation in STEM education among underserved populations through innovative and inclusive approaches to technology education. The project is designed to enhance knowledge and comfort with technology and develop computational thinking among women who were formerly incarcerated and are now seeking to reenter the workforce or adjust to their lives outside the criminal justice system ("women in transition") in the Midwest. While women have become the fastest growing segment of the incarcerated population, prison education and reentry programs are not well prepared to respond to this influx. Women in transition are rarely exposed to STEM education and they are generally isolated from the digital world while in prison. Consequently, they face post-incarceration challenges in accessing and using rapidly changing digital technologies. Against this backdrop, this three-year technology education project will aim to help women in transition in Kansas and Missouri develop STEM skills relevant to job applications and post-incarceration adjustments. The project may serve as a template for building evidence-based workforce preparation efforts in informal settings, and the concurrent online peer networking and app development may also facilitate adaptation for and scaling to other regions and other similarly digitally disadvantaged populations. This project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project design is informed by the research team's past experiences offering technology education to women in transition and other underserved populations in the Midwest. The design includes three interrelated aspects: (1) technology education, (2) web/mobile app development, and (3) original empirical research. The research team will offer hybrid (online and offline) technology training programs to 300 women in transition in Kansas and Missouri. Learners will attend weekly face-to-face technology classes at different levels (introductory, intermediate, and advanced) at public libraries. A member-only online site and an accompanying mobile application for online tutorials and virtual meet-ups will enhance exposure to different types of technologies. Starting with interest-based technology topics including online resume building, information verification, and identity protection, the team will introduce women to deeper STEM topics including elementary coding skills and computational thinking. Empirical research will examine how different modalities of offering technology education are associated with learning outcomes for women participating in the program and the association of increasing knowledge and skills in digital technologies with self-efficacy, perceived social support, employment, and reduced recidivism.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Hyunjin Seo Hannah Britton Megha Ramaswamy Baek-Young Choi Sejun Song
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Media and Technology
It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.

The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: H Chad Lane Neil Comins Jorge Perez-Gallego David Condon
resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.

The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tricia Zucker
resource project Websites, Mobile Apps, and Online Media
The intent of this five-year project is to design, deliver, and study professional development for Informal Science Learning (ISL) educators in the arena of equity-focused STEAM (Science, Technology, Engineering, Art, and Mathematics) teaching and learning. While the strategy of integrating art and science to promote interest, identity, and other STEM-related learning has grown in recent years, this domain is still nascent with respect to a guiding set of best practices. Through prior work, the team has developed and implemented a set of design principles that incorporate effective practices for broadening participation of girls in science via science-art integration on the topic of the biology, chemistry and optics of "Colors in Nature." The continued initiative would impact the ISL field by providing a mechanism for ISL educators in museums, libraries and after-school programs to adopt and implement these STEAM design principles into their work. The team will lead long-term (12-18 months) professional development activities for ISL educators, including: 1) in-person workshops that leverage their four previously developed kits; 2) online, asynchronous learning activities featuring interactive instructional videos around their STEAM design principles; 3) synchronous sessions to debrief content and foster communities of practice; and 4) guided design work around the development or redesign of STEAM activities. In the first four years of the project, the team will work with four core institutional partners (Sitka Sound Science Center, Sno-Isle Libraries, the Fairbanks North Star Borough School District after-school program, and the Pima County Public Library system) across three states (Alaska, Washington, and Arizona). In the project's later stages, they will disseminate their learning tools to a broad, national audience. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project has three main goals: (1) To support ISL educators in offering meaningful STEAM activities, (2) To create institutional change among the partner organizations, and (3) To advance the ISL field with respect to professional development and designing for STEAM Programming. The research questions associated with the professional development activities address the ways in which change occurs and focus on all three levels: individual, institutional, and the ISL field. The methods are qualitative and quantitative, including videotaped observations, pre and post interviews, surveys and analysis of online and offline artifacts. In addition, the project evaluation will assess the implementation of the project's professional development model for effectiveness. Methods will include observations, interviews, surveys and Website analytics and program data.
DATE: -
TEAM MEMBERS: Laura Conner Carrie Tzou Mareca Guthrie Stephen Pompea Blakely Tsurusaki Laura Oxtoby Perrin Teal-Sullivan