Skip to main content

Community Repository Search Results

resource project Media and Technology
Production of a mobile-optimized website, a walking tour, and a museum exhibition exploring the history of underground and submerged sites in downtown San Francisco and the Bay.

The Exploratorium seeks support for the production and distribution of San Francisco's Buried History, a project that uses digital technology to engage the public in a physical and virtual exploration of the urban history of Downtown San Francisco. Specifically, Buried History uses a mobile-optimized web site, a walking tour, and accompanying museum exhibit to explore seventeen underground sites that provide fascinating clues as to how the landscape was used and altered over time, as well as to how past inhabitants of the area lived, worked and died. The project will prompt the public to become curious about the rich historical and cultural information right beneath their feet, and the story that information tells of how and why human activity transformed the landscape of San Francisco. In doing so, Buried History will engage users in adopting a more nuanced sense of place—encouraging its audience to learn from historical insights while developing perspectives on contemporary issues.
DATE: -
TEAM MEMBERS: Robert Rothfarb
resource project Exhibitions
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.

This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.

The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this RAPID project is to better understand how an informal science education organization and its STEM resources can partner with community groups and their expertise to support people's ability to understand, process, and work toward dismantling systemic racism. The project will draw from exhibition and programming resources that have been developed and refined over almost two decades of engagement with the topics of STEM, race, and racism in a science museum context. Examples of STEM programming include data and data visualization, how biology and environment shape behavior and perception, and the use of technology to communicate. This project will build on previously developed relationships in three regions to design and facilitate virtual STEM-informed activities and conversations about race in each regional site. These activities and training will support participants to better understand, process, and work toward dismantling systemic racism.

This RAPID project is timely given the Covid-19 pandemic and the increased awareness of the ongoing impact of systemic racism. The project will address the following questions:


What kinds of virtual STEM-informed activities allow for community members to explore, understand, or act upon the impacts of systemic racism? What are key features of those activities, from the perspective of participants? What are promising changes that community members report as a result of these activities? How are science-based resources perceived, and how do participants perceive they are learning STEM?
What supports allow the regional project group members and museum staff to collaborate successfully, and what obstacles slow that work down?
How do local collaboratives define long-term success of their work, and how can they track their progress over time? The project team and the regional project group members bring a range of experience in community engagement, science education programming, and informal science learning research.


The project will develop this new knowledge for the informal science education field and other local stakeholders through qualitative and participatory research and virtual STEM-informed activities that are responsive to the changing needs of community members. The project will begin in August 2020 as the ability to understand the research questions requires immediate collection of data. Because of the essential nature of this type of research for the informal STEM learning field, the team plans to analyze data and start initial dissemination by the fall of 2020 with additional data collection, analysis, and dissemination continuing as the project progresses.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
Across the country, educators and mentors in informal settings have provided youth with opportunities to persist and thrive along STEM (science, technology, engineering, and mathematics) trajectories. Unfortunately, the current COVID-19 pandemic may limit youths' opportunities to continue pursuing STEM pathways by removing their access to important resources, such as mentors in science labs and other STEM learning spaces. The impact of the pandemic may be especially harmful for youth from underrepresented groups whose families have been disproportionately affected by this crisis. The purpose of this project is to study the impact of COVID-19 on the STEM trajectories of teenagers from underrepresented groups who had previously worked with scientists as mentors before the pandemic. A survey, which will be administered to hundreds of teenagers, will identify the supports that they used to successfully navigate disruptions as they continued to pursue college and career pathways in STEM. For teenagers who decided not to actively pursue STEM pathways during the pandemic, this survey will illuminate how loss of supports and new challenges discouraged their active pursuit of STEM. By identifying supports and challenges that encouraged or discouraged STEM pursuits, this project will advance knowledge on how informal learning programs can support underrepresented teenagers in persisting along STEM pathways during national crises and emergencies.

The American Museum of Natural History will conduct mixed-methods research to explore the impact of the pandemic on the STEM trajectories of underrepresented teenagers. They will administer surveys to 560 teenagers from underrepresented groups who previously participated in the New York City Science Research Mentoring Consortium. The survey will ascertain whether and how the youth found access to new supports or lost access to former supports; whether they face new challenges and how they have responded to those challenges; and whether and how their feelings about pursuing STEM in college and beyond have changed. Teenagers who complete the survey will identify adults in their lives who have been important in supporting their pursuits in STEM, and two adults per teenager will also be invited to complete surveys on perceived disruptions. Latent class analyses, cognitive interviews, and consultation with youth and survey experts will be used to establish survey validity, while the survey results will be analyzed via two-mode social network analysis. Additionally, 16 teenagers will participate in in-depth interviews regarding the impact of the pandemic on their STEM trajectories. Findings and implications for practice will be disseminated widely to researchers, educators, and mentors in informal science education. These findings will help stakeholders to provide better supports for underrepresented youth during the current pandemic and during future national emergencies. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This RAPID award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Preeti Gupta Timothy Podkul Karen Hammerness
resource project Public Programs
While museums strive to be as inclusive and welcoming as possible to all visitors, data from many institutions shows that audiences are still disproportionately white, well-educated, and more affluent than the average local population. One contributing factor to the lack of progress is that staff often create programs that work to create inclusivity from their own perspective, rather than grounding the work in a broader vision of the museum experience. This project will allow for a deeper exploration of how visitors, particularly those from groups that visit less frequently, experience a museum visit, and how their sense of belonging is supported or eroded during their visit. The team believes this sense is built up or taken away through specific moments of engagement or alienation and will explore these moments that matter through the work. Through intensive work at one museum, and additional work at three other museums, the project will look for themes and insights that can help all museums to create more positive moments that matter for all audiences. Specifically, the project will result in a) insights for museums in supporting a visitor-based sense of belonging, b) shared methods for working with visitors that could be applied by other researchers to explore specifics in a particular setting, and c) grounding work to develop survey questions for use across the field. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Building on existing work around exclusion and inclusion in everyday science learning, this project aims to formally define what a sense of belonging means in the science and natural history museum context as a construct for understanding inclusivity. The research team hypothesizes that the majority of experiences in an entire museum visit have a relatively neutral effect on visitor sense of belonging; however, at times, visitors may experience positive or negative moments, and these moments that matter may influence a visitor's STEM engagement, interest, and/or identity. This exploratory work will help to develop and ground the construct of sense of belonging within the museum visitor's experiences, to identify visitor moments that matter using an equity approach that intentionally centers the experiences of visitors from underrepresented groups, and to form the basis for future research that would support the development of a fieldwide measure of sense of belonging. The research study will focus on defining the construct of sense of belonging so it 1) aligns with the research literature and 2) is grounded in the experiences of science/natural history museum visitors. Photovoice data collection method and interviews will be used with visitors ages six and above to identify moments that matter for them during a visit to a science/natural history museum. This project will create new understanding of this construct for not only science/natural history museums and the larger informal science education (ISE) field, but fill a gap in the overall literature around the construct of sense of belonging. The project will also provide new learnings for the ISE field on how to adapt and use the photovoice method to study complex constructs, such as sense of belonging, in science/natural history museums.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
There is a national need to expand opportunities to learn coding and computational thinking in informal science, technology, engineering, and mathematics (STEM) education. These skills are increasingly needed in STEM disciplines. As young people learn to code, they engage in computational thinking concepts and practices which are problem solving strategies that include repeated process (iterative) design skills. This project promotes innovation by designing and developing activities for tinkering spaces (a space filled with materials for hands-on exploration of STEM) combined with coding in informal learning organizations such as museums, and community centers. The project supports both tinkering and making as methods to meaningfully incorporate computational thinking in STEM learning experiences. The tinkering approach to learning is characterized by hands-on, trial and error engagement. Making is similar to tinkering with additional attention to learning with peer groups. The long-term goal of the project is to enable informal educators to engage in STEM programming with youth and families from underrepresented groups. The project brings together interdisciplinary teams from the Department of Information Science at the University of Colorado Boulder (CU Boulder), the Tinkering Studio at the Exploratorium, and the Lifelong Kindergarten research group at the Massachusetts Institution of Technology. In collaboration with local partner sites, the project team will design and disseminate a collection of six computational tinkering activity areas that engage learners in creative explorations using a combination of physical objects and computational code. The team will develop visual coding "microworlds" for each of the activity areas, specialized sets of coding blocks designed to provide scaffolding. Additionally, the project team will design and develop facilitation guides to document these activities and facilitation strategies, as well as workshops to better support facilitators in making and tinkering spaces.

The project enhances knowledge building through investigations of what instructional supports informal educators need to develop effective facilitation practices that engage underrepresented youth and families in STEM computational learning experiences. Study participants will include informal educators in museum, library, and community-based settings with varying backgrounds and experiences facilitating computing activities. The project team will also engage youth and families from underrepresented groups through collaborative efforts with community-based partners. Research questions include: 1) What challenges and barriers do informal learning educator, face to engage their learners in design-based activities with computing? 2) What supports informal learning educators to take on key facilitation practices that support children and families in computational tinkering activities? 3) In jointly engaging in these computational tinkering activities, how do the activities and informal learning educators? facilitation of these activities impact children's and families' development of computational tinkering and identities as creators and learners with computing? To answer these research questions the project will use qualitative ethnographic methods to study the developing interactions between learners and facilitators at three local sites. Comparative case studies of facilitators across the local partner sites will also be used to examine what supports facilitators to take on key facilitation practices. Data sources will include participant observation of facilitators and families, documentation in the form of photos, videos, and audio recordings, project artifacts, bi-monthly short surveys with reflective prompts, and interviews with facilitators and families.

This award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
The impacts of changes in the climate at local and global levels threaten how people live. Some frontline communities, especially in historically disenfranchised and under-resourced areas, are particularly vulnerable to the devastating effects of climatological events such as wildfires, flooding, and urban heat islands. As such, there is an urgent need for collective, evidence-based understanding and engagement to prevent and prepare for these potentially fatal events. Led by the Oregon Museum of Science and Industry (OMSI) in Portland, Oregon, in collaboration with local and national partners, Youth Lead the Way is an early-stage Innovations in Development project that offers a theory-based approach for youth in climatologically vulnerable communities to work in climate science research alongside field researchers, develop leadership skills, and engage in timely conversations that impact their own communities. The project will develop and evaluate a Youth Advisory Research Board model to equip and support youth and informal STEM education institutions to conduct evidence-based research on local climate impacts and communicate the findings of their research to their communities. Youth Lead the Way advances the work of several previous NSF-funded projects on climate education, youth advisory boards, and collaborative networks to engage the public in informal STEM learning. Findings from this project will support ongoing efforts in the informal STEM education field to meaningfully engage youth and to more effectively communicate science related to climate and its impacts to the public.

During this initial two-year early-stage project, youth predominantly from racial and ethnic groups underrepresented in STEM will engage in a year-long extended STEM experience. These youth will work collaboratively with scientists and museum professionals to enhance their skills as climate researchers, science communicators, and educational leaders, while reaching an estimated 4,000 or more public audience members through research and events at OMSI, in their schools, and in their communities. Using a cohort model, the youth will conduct scientifically based research studies on various local climate impact topics while concurrently serving in an advisory role at the Oregon Museum of Science and Industry, where they will participate in shaping relevant museum programs and practices. The youth will also develop and present climate stories, a communication approach based on storytelling, to raise public understanding and awareness about local climatological changes and impacts. In addition to the youth component, a companion workshop will be held at the Sciencenter in Ithaca, New York, a partner organization, to train staff and formatively assess the feasibility of scaling the model in other museums. At the program level, an exploratory qualitative research study will be conducted to identify the factors of the overall model that contribute to desired outcomes of youth engagement, climate impact education, and informal science education professional development. Interviews, surveys, focus groups, group chats among youth cohort members, and reviews of artifacts generated by the youth will inform this exploratory study. A theory-based guide outlining key findings, considerations, and recommendations will also be produced. The dissemination of this work will be multi-tiered, reaching thousands within the target communities through public programs, professional networks, at conferences, and a live virtual professional development event hosted by the Association for Science-Technology Centers. If successful, Youth Lead the Way will lay the groundwork for a model that promotes youth and public engagement in STEM through climate science research and identifies promising pathways for future research and similar efforts well beyond this project.

This early-stage Innovations in Development project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Randol Christopher Cardiel Rebecca Reilly Jennifer Schwade Imme Huttmann Carla Herran Marcie Benne Todd Shagott Maria Zybina
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.

The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan Patricia Wonch Hill Elizabeth VanWormer
resource project Media and Technology
This RAPID award is made by the AISL program in the Division of Research on Learning in the Directorate for Education and Human Resources, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. This project addresses two critical aspects of the impact on COVID-19 on families: (a) the large-scale shift to at-home learning based on nationwide school closures and (b) the critical need for families to understand the basic science of virus transmission and prevention. To address these needs, the project team will develop a series of STEM activities for families with children in grades K-6 that make use of items readily available in most households. The activities help children and their families learn about viruses, virus transmission, and virus prevention while also developing other STEM-skills, particularly related to engineering design. Importantly, the project team also considers the emotional well-being of children and families during the disruption of the COVID-19 pandemic. Led by researchers from Indiana University and Binghamton University, and experts in educational resource development from Science Friday (a non-profit organization dedicated to increasing the public's access to science and scientific information through podcasts, digital videos, original web articles, and educational resources for teachers and informal educators) the project is further supported by partnerships with the New York Hall of Science, Amazeum (AR), the Gulf of Maine Research Institute (ME), The Tech Museum of Innovation (CA), the Indiana State Museum, and Kopernik Observatory Science Center (NY). The activities will be shared with families through live-streamed web sessions that introduce the activity, give tips to adults for facilitation, share a bit on related STEM careers and engage the audience in dialog about the activity and their current experiences. Versions of the sessions that are recorded will be edited and include closed-captioning and subtitles in multiple languages before being posted on platforms such as YouTube.

This project uses a design-based research approach to investigate strategies for enabling families to actively engage with STEM while home and away from their traditional institutions during a period of crisis. The research components focus on:


Engagement: How do families engage in the activity tasks, in terms of processes, practices, and use of resources? Who participated, why did they choose to participate and how did they engage (including modification of activities)? What barriers prevented interested families from completing activities?
Impact: How did the activities change participants? feelings of: a) efficacy around STEM and b) connectedness/ isolation, during extended school closures?
The Activities: Which activities had the greatest uptake? How many activity ideas were submitted by those outside of the team? What was the age/content focus of each of these activities?


The researchers will analyze social media data (including data on resource downloads and use of tracked links, YouTube and Facebook views, comment threads during livestreams and Likes/Shares/Follows across social media sites) to refine and improve the activities and programming as well as learn about the ways families are engaging in the activities. The researchers will solicit survey responses from website visitors to gather more information on participants, why they participated, how they engaged and how the activities impacted participants? efficacy around STEM and their feelings of connectedness or isolation. The researchers will also ask participants to submit images, videos and text that describes what they are making and their process along the way. Analysis of this data would lead to insights on how children and families use STEM language and practices; how children and families ask questions and use COVID-19-related and other information as part of their design work; and how ideas are formed, shaped and refined as families engage in design and making. While the project focuses on a unique opportunity to collect data on family STEM engagement as families respond to disruptions from the COVID-19 pandemic, this project and its findings will provide a knowledge base that can be utilized to inform future responses to national emergencies, other work aimed at promoting family learning at home, and approaches to supporting children in open-ended problem solving.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.

The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.

In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.

Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
DATE: -
TEAM MEMBERS: Hilleary Osheroff Kristina Yu