Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
This project addresses the urgent need for the development of equitable approaches to early childhood STEM education that honor the diverse cultural practices through which caregivers (such as parents, grandparents, and other adults in children’s lives) support young children’s learning. Recent studies suggest that both formal and informal educational institutions often privilege Western or Eurocentric parenting practices, neglecting many families’ cultural practices and ways of learning. This study will bring together a group of caregivers, pre-K educators, researchers, and museum staff to investigate how families with young children negotiate among their own cultural practices and the types of STEM learning they encounter in museums, schools, and other community settings. The project team will work together to identify opportunities for informal STEM learning institutions to strengthen their roles as places that can bridge home and school environments and open up new possibilities for building on caregivers’ knowledge and cultural practices within this larger community context. The project will directly benefit the 330 families whose children attend the partnering public school each year, as well as hundreds of families who attend family events at the New York Hall of Science annually. Finally, by considering nuances in caregivers’ perspectives and experiences based on multiple facets of their identities, the research will reveal how structures in educational settings might be changed to become more inclusive and culturally responsive for the broadest possible audience of families.

This Pilots and Feasibility project seeks to 1) conduct exploratory research to understand caregiver engagement, defined as caregivers’ expectations, values, and practices related to their roles in children’s learning, from the perspectives of caregivers, and 2) engage in co-design efforts with caregivers and pre-K educators to explore how the museum can be leveraged as a material and creative resource to support caregiver engagement in STEM learning. This work will be carried out in the context of a long-term partnership between the New York Hall of Science and the New York City Department of Education. Methods will include in-depth interviews with caregivers, using narrative and intersectional research methods to extend existing studies on caregiver engagement in informal STEM learning, while taking into account multiple aspects of families’ social and cultural identities. This work will be carried out in Corona — a neighborhood in Queens, NY, largely made up of low-income and first-generation immigrant families. The project team will collaboratively interpret findings and engage in the initial phases of co-design work, which will include: reflecting on the systems currently in place to support caregivers’ involvement in children’s learning across settings; collaboratively generating new, culturally responsive strategies for leveraging the museum as a material and creative resource for families with young children; and choosing promising directions for further development and testing. Products from this work will include directions for new caregiver engagement initiatives that can be developed and refined as the partnership continues, and strategies for supporting equitable participation by caregivers, pre-K educators, and other community stakeholders in future research-practice partnerships.
DATE: -
TEAM MEMBERS: Susan Letourneau Delia Meza Jasmine Maldonado
resource project Public Programs
This Innovations in Development project supports racially and ethnically diverse youth in learning about climate resilience in informal settings, including community centers, afterschool programs, and museums. The project aims to: (1) build the capacity of community organizations to implement youth programming on climate resilience; (2) increase youth knowledge, skills, and self-efficacy associated with climate resilience (also referred to as environmental health literacy for climate resilience); and (3) explore how collaborating research universities and community organizations engage diverse youth in informal STEM learning. Project partners include the UNC Institute for the Environment, the University of Washington-Interdisciplinary Center for Exposures, Diseases, Genomics and Environment, the North Carolina Museum of Natural Sciences, Juntos NC, and the Duwamish River Community Coalition (DRCC). Juntos NC and DRCC actively engage Latino and Indigenous youth in their programming and seek to implement resilience-focused programming that supports youth science learning and leadership development.

Together, informal educators and participating youth will develop locally relevant solutions to climate impacts in their communities. Youth will interact with university-based climate scientists and educators to collect and analyze data and will participate in resilience-focused dialogue, planning, and actions in their communities. Youth will share what they learn with their families and peers through family events and teen summits. The project will engage dozens of educators in community organizations and at least 250 youth, who will share what they learn with their families and communities, reaching hundreds more people through communications and local action projects. Mixed-methods assessment will provide insight into the extent participating youth (a) develop environmental health literacy for climate resilience, and (b) take action to address resilience in their home communities. The team will assess how these outcomes vary by location, and the implications of any variation on potential for project replication. A participatory evaluation, led by an external evaluator, will provide insight into empowerment outcomes. Findings will be disseminated to professional audiences at local and national conferences; and curricular materials from this project will be disseminated through the project website.
DATE: -
TEAM MEMBERS: Kathleen Gray Sarah Yelton
resource project Exhibitions
This award is funded with support from NSF's program for Advancing Informal STEM Education.

This project develops a partnership between language researchers and Planet Word, a new museum devoted to language in Washington D.C., to engage museum visitors in scientific research and outreach. Interested museum visitors from all ages and backgrounds are invited to participate in behavioral research studies on a range of language-related topics. This "living language laboratory" of interactive studies includes accompanying educational demonstrations. These activities will lead to the development of infrastructure and best practices that will allow future language researchers to engage with the public at Planet Word and other similar sites.

The project enhances scientific understanding by engaging visitors in activities that expose them to active science about language as a part of their visit to the museum. For example, the research examines topics from understanding what makes certain American Sign Language signs more learnable, to why it is easier to understand people we know rather than strangers, to whether we think differently when we are reading a text message compared to reading more formal writing. In doing so, the project raises the profile of linguistics among the general public and promotes scientifically informed attitudes about language. The project also provides key opportunities to disseminate research findings of interest to the public and to promote greater interest in STEM topics among museum visitors, as well as student trainees and museum staff. The project creates educational and research opportunities for students, who will be trained in a hands-on course, and will gain first-hand experience with research and outreach in a museum setting. Through the collaborative partnership of researchers from University of Maryland, Howard University, and Gallaudet University, the project broadens participation of underrepresented minority students in the language sciences, seeking to diversify the pipeline of scholars continuing in careers in the language sciences and related STEM fields.
DATE: -
TEAM MEMBERS: Charlotte Vaughn Yi Ting Huang Deanna Gagne Patrick Plummer
resource project Public Programs
The U.S. urgently needs the perspective and knowledge of females who are Latinx and African American in STEM fields. Providing early STEM interest pathways for these populations that are historically underrepresented in STEM fields is critical to creating gender equity in the STEM workforce. There are profound inequities in STEM fields for women of color that impact their interest and persistence in these fields. This Research in Service to Practice project will build important knowledge about early pathways for reducing these inequities by developing early interest in STEM. Gender stereotypes around who can do STEM are one of the sociocultural barriers that contributes to girls’ loss of interest in STEM. These stereotypes emerge early and steer young women away from STEM studies and pursuits. Exposing girls to role models is an effective strategy for challenging stereotypes of who belongs and succeeds in STEM. This project will explore how an afterschool program that combines narrative and storytelling approaches, STEM role models, and family supports, sparks elementary-age girls’ interest in STEM and fosters their STEM identity. The project targets K-5 students and families from underrepresented groups (e.g., Latinx and African American) living in poverty. The project will evaluate an inquiry-based, afterschool program that serves both elementary school girls and boys and explores if adding storytelling components to the out-of-school time (OST) learning will better support girls’ interest in STEM. The storytelling features include: 1) shared reading of books featuring females in STEM; 2) students’ own narratives that reminisce about their STEM experiences; and 3) video interviews of female parents and community members with STEM careers. A secondary aim of this project is to build capacity of schools and afterschool providers to deliver and sustain afterschool STEM enrichment experiences. Museum-based informal STEM experts will co-teach with afterschool providers to deliver the Children’s Museum Houston (CMH) curriculum called Afterschool Science, Technology, Engineering, Arts and Math (A’STEAM). Although A’STEAM has been implemented in over 100 sites and shows promise, to scale-up this and other promising afterschool programs, the team will evaluate how professional development resources and the co-facilitation approach can build afterschool educators' capacity to deliver the most promising approaches.

Researchers at the Children’s Learning Institute (CLI) at UTHealth will partner with Museum-based informal STEM educators at CMH, YES Prep, a high performing charter school serving >95% of underrepresented groups, and other afterschool providers serving mostly underrepresented groups experiencing poverty. Storytelling components that highlight females in STEM will be added to an existing afterschool program (A'STEAM Basic). This derivative program is called A’STEAM Stories. Both instantiations of the afterschool programs (Basic and Stories) include an afterschool educator component (ongoing professional development and coaching), a family component (e.g., home extension activities, in-person, and virtual family learning events), and two age-based groups (K-G2 and G3-G5). Further, the A’STEAM Stories professional development for educators includes training that challenges STEM gender stereotypes and explains how to make science interesting to girls. The 4-year project has four phases. In Phase 1, researchers, CMH, and afterschool educators will adapt the curriculum for scalability and the planned storytelling variation. During Phase 2, the research team will conduct an experimental study to evaluate program impacts on increasing STEM interest and identity and reducing STEM gender stereotypes. To this end, the project’s team will recruit 36 sites and 1200 children across Kindergarten through Grade 5. This experimental phase is designed to produce causal evidence and meet the highest standards for rigorous research. The researchers will randomly assign sites to one of three groups: control, A’STEAM Basic, or A’STEAM Stories. During Phase 3, researchers will follow-up with participating sites to understand if the inclusion of afterschool educators as co-facilitators of the program allowed for sustainability after Museum informal science educator support is withdrawn. In Phase 4, the team will disseminate the afterschool curriculum and conduct two training-of-trainers for local and national afterschool educators. This study uses quantitative and qualitative approaches. Data sources include educator and family surveys, focus groups, and interviews as well as observations of afterschool program instructional quality and analysis of parent-child discourse during a STEM task. Constructs assessed with children include STEM interest, STEM identity, and STEM gender stereotype endorsement as well as standardized measures of vocabulary, science, and math. Findings will increase understanding of how to optimize OST STEM experiences for elementary-age girls and how to strengthen STEM interest for all participants. Further, this project will advance our knowledge of the extent to which scaffolded, co-teaching approaches build capacity of afterschool providers to sustain inquiry-based STEM programs.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Tricia Zucker Gloria Yeomans-Maldonado Cheryl McCallum Lance Menster
resource project Exhibitions
Recent studies have advocated for a shift toward educational practices that involve learners in actively contributing to science, technology, engineering, and mathematics (STEM) as a shared and public endeavor, rather than limiting their involvement to the construction of previously established knowledge. Prioritizing learners’ agency in deciding what is worth knowing and how learning takes place may create more equitable and inclusive learning experiences by centering the knowledge, cultural practices, and social interactions that motivate learning for people across ages, genders, and backgrounds. In informal learning environments, families’ social interactions are critical avenues for STEM learning, and science centers and museums have developed strategies for prompting families’ sustained engagement and conversation at STEM exhibits. However, exhibits often guide visitors’ exploration toward predetermined insights, constraining the ways that families can interact with STEM content, and neglecting opportunities to tap into their prior knowledge. Practices in the maker movement that emphasize skill-building and creative expression, and participatory practices in museums that invite visitors to contribute to exhibits in consequential ways both have the potential to reframe STEM learning as an ongoing, social process that welcomes diverse perspectives. Yet little is known about how these practices can be scaled, and how families themselves respond to these efforts, particularly for the diverse family audiences that science centers and museums aim to serve. Further, although gender and ethnicity both affect learning in informal settings, studies often separate participants along a single dimension, obscuring important nuances in families’ experiences. By addressing these outstanding questions, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

Research will address (1) how families perceive and act on their collective epistemic agency while exploring STEM exhibits (i.e., how they work together to negotiate and pursue their own learning goals); (2) whether and how families’ expressions of agency are influenced by gender and ethnicity; and (3) what exhibit design features support expressions of agency for the broadest possible audience. Research studies will use interviews and observational case studies at a range of exhibits with distinct affordances to examine families’ epistemic agency as a shared, social practice. Cultural historical activity theory and intersectional approaches will guide qualitative analyses of families’ activities as systems that are mediated by the physical environment and social setting. Education activities will involve an ongoing collaboration between researchers, exhibit designers, educators, and facilitators (high-school and college-level floor staff), using a Change Laboratory model. The group will use emerging findings from the research to create a reflection tool to guide the development of more inclusive learning experiences at STEM exhibits, and a set of design principles for supporting families’ expressions of agency. A longitudinal ethnographic study will document the development of inclusive exhibit design practices throughout the project as well as how the Change Lab participants develop their sociocultural perspectives on learning and exhibit design over time. Analyzing these shifts in practice within the Change Lab will provide a deeper understanding of what works and what is difficult or does not occur when working toward infrastructure change in museums. By considering how multiple aspects of families’ identities shape their learning experiences, this work will generate evidence-based recommendations to help science centers and museums develop more inclusive practices that foster a sense of ownership over the learning process for the broadest possible audience of families.
DATE: -
TEAM MEMBERS: Susan Letourneau
resource project Exhibitions
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.

This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
While museums strive to be as inclusive and welcoming as possible to all visitors, data from many institutions shows that audiences are still disproportionately white, well-educated, and more affluent than the average local population. One contributing factor to the lack of progress is that staff often create programs that work to create inclusivity from their own perspective, rather than grounding the work in a broader vision of the museum experience. This project will allow for a deeper exploration of how visitors, particularly those from groups that visit less frequently, experience a museum visit, and how their sense of belonging is supported or eroded during their visit. The team believes this sense is built up or taken away through specific moments of engagement or alienation and will explore these moments that matter through the work. Through intensive work at one museum, and additional work at three other museums, the project will look for themes and insights that can help all museums to create more positive moments that matter for all audiences. Specifically, the project will result in a) insights for museums in supporting a visitor-based sense of belonging, b) shared methods for working with visitors that could be applied by other researchers to explore specifics in a particular setting, and c) grounding work to develop survey questions for use across the field. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Building on existing work around exclusion and inclusion in everyday science learning, this project aims to formally define what a sense of belonging means in the science and natural history museum context as a construct for understanding inclusivity. The research team hypothesizes that the majority of experiences in an entire museum visit have a relatively neutral effect on visitor sense of belonging; however, at times, visitors may experience positive or negative moments, and these moments that matter may influence a visitor's STEM engagement, interest, and/or identity. This exploratory work will help to develop and ground the construct of sense of belonging within the museum visitor's experiences, to identify visitor moments that matter using an equity approach that intentionally centers the experiences of visitors from underrepresented groups, and to form the basis for future research that would support the development of a fieldwide measure of sense of belonging. The research study will focus on defining the construct of sense of belonging so it 1) aligns with the research literature and 2) is grounded in the experiences of science/natural history museum visitors. Photovoice data collection method and interviews will be used with visitors ages six and above to identify moments that matter for them during a visit to a science/natural history museum. This project will create new understanding of this construct for not only science/natural history museums and the larger informal science education (ISE) field, but fill a gap in the overall literature around the construct of sense of belonging. The project will also provide new learnings for the ISE field on how to adapt and use the photovoice method to study complex constructs, such as sense of belonging, in science/natural history museums.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
There is a national need to expand opportunities to learn coding and computational thinking in informal science, technology, engineering, and mathematics (STEM) education. These skills are increasingly needed in STEM disciplines. As young people learn to code, they engage in computational thinking concepts and practices which are problem solving strategies that include repeated process (iterative) design skills. This project promotes innovation by designing and developing activities for tinkering spaces (a space filled with materials for hands-on exploration of STEM) combined with coding in informal learning organizations such as museums, and community centers. The project supports both tinkering and making as methods to meaningfully incorporate computational thinking in STEM learning experiences. The tinkering approach to learning is characterized by hands-on, trial and error engagement. Making is similar to tinkering with additional attention to learning with peer groups. The long-term goal of the project is to enable informal educators to engage in STEM programming with youth and families from underrepresented groups. The project brings together interdisciplinary teams from the Department of Information Science at the University of Colorado Boulder (CU Boulder), the Tinkering Studio at the Exploratorium, and the Lifelong Kindergarten research group at the Massachusetts Institution of Technology. In collaboration with local partner sites, the project team will design and disseminate a collection of six computational tinkering activity areas that engage learners in creative explorations using a combination of physical objects and computational code. The team will develop visual coding "microworlds" for each of the activity areas, specialized sets of coding blocks designed to provide scaffolding. Additionally, the project team will design and develop facilitation guides to document these activities and facilitation strategies, as well as workshops to better support facilitators in making and tinkering spaces.

The project enhances knowledge building through investigations of what instructional supports informal educators need to develop effective facilitation practices that engage underrepresented youth and families in STEM computational learning experiences. Study participants will include informal educators in museum, library, and community-based settings with varying backgrounds and experiences facilitating computing activities. The project team will also engage youth and families from underrepresented groups through collaborative efforts with community-based partners. Research questions include: 1) What challenges and barriers do informal learning educator, face to engage their learners in design-based activities with computing? 2) What supports informal learning educators to take on key facilitation practices that support children and families in computational tinkering activities? 3) In jointly engaging in these computational tinkering activities, how do the activities and informal learning educators? facilitation of these activities impact children's and families' development of computational tinkering and identities as creators and learners with computing? To answer these research questions the project will use qualitative ethnographic methods to study the developing interactions between learners and facilitators at three local sites. Comparative case studies of facilitators across the local partner sites will also be used to examine what supports facilitators to take on key facilitation practices. Data sources will include participant observation of facilitators and families, documentation in the form of photos, videos, and audio recordings, project artifacts, bi-monthly short surveys with reflective prompts, and interviews with facilitators and families.

This award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
The impacts of changes in the climate at local and global levels threaten how people live. Some frontline communities, especially in historically disenfranchised and under-resourced areas, are particularly vulnerable to the devastating effects of climatological events such as wildfires, flooding, and urban heat islands. As such, there is an urgent need for collective, evidence-based understanding and engagement to prevent and prepare for these potentially fatal events. Led by the Oregon Museum of Science and Industry (OMSI) in Portland, Oregon, in collaboration with local and national partners, Youth Lead the Way is an early-stage Innovations in Development project that offers a theory-based approach for youth in climatologically vulnerable communities to work in climate science research alongside field researchers, develop leadership skills, and engage in timely conversations that impact their own communities. The project will develop and evaluate a Youth Advisory Research Board model to equip and support youth and informal STEM education institutions to conduct evidence-based research on local climate impacts and communicate the findings of their research to their communities. Youth Lead the Way advances the work of several previous NSF-funded projects on climate education, youth advisory boards, and collaborative networks to engage the public in informal STEM learning. Findings from this project will support ongoing efforts in the informal STEM education field to meaningfully engage youth and to more effectively communicate science related to climate and its impacts to the public.

During this initial two-year early-stage project, youth predominantly from racial and ethnic groups underrepresented in STEM will engage in a year-long extended STEM experience. These youth will work collaboratively with scientists and museum professionals to enhance their skills as climate researchers, science communicators, and educational leaders, while reaching an estimated 4,000 or more public audience members through research and events at OMSI, in their schools, and in their communities. Using a cohort model, the youth will conduct scientifically based research studies on various local climate impact topics while concurrently serving in an advisory role at the Oregon Museum of Science and Industry, where they will participate in shaping relevant museum programs and practices. The youth will also develop and present climate stories, a communication approach based on storytelling, to raise public understanding and awareness about local climatological changes and impacts. In addition to the youth component, a companion workshop will be held at the Sciencenter in Ithaca, New York, a partner organization, to train staff and formatively assess the feasibility of scaling the model in other museums. At the program level, an exploratory qualitative research study will be conducted to identify the factors of the overall model that contribute to desired outcomes of youth engagement, climate impact education, and informal science education professional development. Interviews, surveys, focus groups, group chats among youth cohort members, and reviews of artifacts generated by the youth will inform this exploratory study. A theory-based guide outlining key findings, considerations, and recommendations will also be produced. The dissemination of this work will be multi-tiered, reaching thousands within the target communities through public programs, professional networks, at conferences, and a live virtual professional development event hosted by the Association for Science-Technology Centers. If successful, Youth Lead the Way will lay the groundwork for a model that promotes youth and public engagement in STEM through climate science research and identifies promising pathways for future research and similar efforts well beyond this project.

This early-stage Innovations in Development project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Randol Christopher Cardiel Rebecca Reilly Jennifer Schwade Imme Huttmann Carla Herran Marcie Benne Todd Shagott Maria Zybina
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource project Media and Technology
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.

This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Whitney Owens
resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -