Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This is a Science Learning+ planning project that will develop a research plan for investigating how applying the principles of embodied cognition to the design of informal learning environments can support young children's (ages 2-6) engagement with, and understanding of, science topics and concepts. While it has been fairly well established that cognition is intertwined with the body's interaction in the physical world, the precise means of applying these ideas to the design of effective learning environments is still emerging. Experimenting with various embodied cognition activities and physical learning configurations to understand what conditions are optimal for informal learning environments for early learners is a major objective of this project. During the planning grant period, the project will identity additional practitioner/research collaborations and will develop research plans for a suite of studies to be enacted by multiple teams of informal learning practitioners and cognitive scientists across the US and UK and that will be submitted as a Phase 2 research. The primary activities of this planning period include organizing a series of workshops that bring together informal learning educators and embodied cognition researchers to engage in deep discussion and design experimentation that will inform the development and refinement of research questions, protocols, and measurement tools. These discussions will be informed by observations of young children as they interact with the River of Grass, an exhibit prototype in which principles of embodied cognition are embedded in its design. The planning period will be led by a collaborative team of informal learning practitioners and cognitive scientists from the US and UK. This group will also oversee plans for the development of a new model for informal STEM research in which a constellation of practitioner/research teams across multiple organizations investigates topics of importance to informal learning practice and research that have the potential to result in a robust body of research that informs the design of informal learning spaces.
DATE: -
resource project Media and Technology
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
DATE: -
TEAM MEMBERS: Barietta Scott
resource project Public Programs
This project by teams at the University of Alaska and the Oregon Museum of Science and Industry will engage the public in the topic of the nature and prevalence of permafrost, its scale on the earth and the important role it plays in the global climate. It builds on 50 years of informal education and outreach at the Alaskan Permafrost Tunnel near Fairbanks, AK, which, since the 1960s, has been the Nation's only underground facility for research related to permafrost and climate. The project has four components: (1) a nationally distributed 2,000 square-foot traveling exhibition; (2) exhibit and program enhancements to the learning opportunities at the tunnel; (3) programs, table-top exhibits and oral history research in 27 Native Alaskan villages; and (4) an education research study. Each of these components will be evaluated over the course of the work. By upgrading the displays at the tunnel, and by taking traveling programs to the villages, the work will extend the tunnel experience across Alaska. In the villages the team will collect stories about climate change, along with samples of real ancient ice and permafrost. These stories and materials will be used in the traveling exhibit which is expected to be at three museums per year for eight years. The research component of the initiative will build on the observation to date that the tunnel has provided thousands of visitors with an underground immersive environment where they learn about the science research being conducted and engage with climate-sensitive materials (e.g., permafrost, wedge ice, frozen silt, Pleistocene bones) using all of their senses. It has been conjectured that their learning experiences are enhanced by interacting with real vs. replicated objects. As museums often contain exhibits that are more likely to contain replicated and/or virtual objects and environments, understanding the impact that these different categories of objects have on learning is important. Using both types of materials, the project will investigate differences in their efficacy in informal science learning institutions related to climate change. Real objects are postulated to have the following attributes that stimulate fuller engagement; they are (1) information-rich by virtue of such features as their texture, odor, and dimensionality; (2) at real-life scale; (3) authentic, i.e., original objects; and (4) often unique, i.e., have inherent value. Research questions will explore the potential impacts on learning of these and related features. Methods employed will be observation, video, and interviews of the public with a particular focus on visitor talk with respect to explanations and elaborations about permafrost, tipping points, climate change, and geological time.
DATE: -
TEAM MEMBERS: Matthew Sturm Laura Conner Victoria Coats
resource project Exhibitions
This Pathways project focuses on research that explores diverse family visitors' engagement with and thinking about science as they experience exhibits at the Museum of Science, Boston. The research team will work closely with museum staff on the implementation of three studies during which they will systematically investigate the arc of visitors' engagement (cognitive, emotional, and physical) as the visitors experience a range of exhibits. The team will also describe how visitors' engagement relates to their thinking about science concepts. The project team uses a mix of data collection and analysis methods, including self-report measures and physiological data along with the tracking of visitor behavior to understand and articulate engagement, along with information on learners' thinking about scientific concepts and demographic information. This project will advance the ISE field by offering findings about engagement that account for the applied and complex nature of the museum setting. The research team will be able to help the ISE field move forward in terms of building theoretical understanding about engagement and offering potential lines of inquiry for future research. The results can also be used to inform exhibit and programmatic design as well as how family learning in museums is evaluated.
DATE: -
TEAM MEMBERS: Gabrielle Rappolt-Schlictmann Christine Reich Samantha Daley
resource project Media and Technology
This project is making novel use of familiar technology (smartphones and tablets) to address the immediate and pressing challenge of affordable, ongoing, large-scale museum evaluation, while encouraging museum visitors to engage deeply with museum content. Using a smartphone app, museum visitors pose questions to a 'virtual scientist' called Dr. Discovery (Dr. D). Dr. D provides answers and the chance to complete fun mini-challenges. The questions visitors ask are gathered in a large database. An analytics system analyzes these data and a password-protected website provides continuous, accessible evaluation data to museum staff, helping them make just-in-time tweaks (or longer term changes) to exhibit-related content (such as multimedia, lecture topics, docent training, experience carts, etc.) as current events and visitors' needs and interests change. The intellectual merit of this project is that it is building evaluation capacity among informal educators, advancing the fields of visitor studies, museum evaluation, informal science learning, and situated engagement, and is contributing to the development of novel evaluation techniques in museums. This project has many broader impacts: The Ask Dr. Discovery system is available to any venue that wishes to use or adapt it to their context. By enhancing the visitor experience and improving museum access to data for evaluation and data-driven decision making across the country, Ask Dr. Discovery has both a direct and indirect impact on museums and visitors of all types. This project is also training the next generation of STEM and education innovators by employing a diverse team of undergraduate students.
DATE: -
TEAM MEMBERS: Judd Bowman Catherine Bowman Brian Nelson
resource project Exhibitions
The project "Microetching of the Human Brain" endeavors to create the most comprehensive illustration of the human brain that has ever existed. Investigators will utilize reflective microetching, a process combining mathematics and optics to create an art piece that evolves based on the position of the viewer. Microetching allows the depiction of very complex brain activity at incredibly fine detail. The final piece will be a wall-sized piece of fine art experienced by a diverse population of thousands daily at the Franklin Institute in Philadelphia. Additionally, this project is an educational opportunity for undergraduate students through direct involvement in the creation of the piece. As this project spans many scientific and artistic disciplines, students will be given an opportunity to learn about fields apart from their own, to broaden their skill set, and to learn how to communicate scientific concepts effectively. This project is a collaboration between neuroscientists, engineers, physicists, and artists to address the question of whether art can be used in the dissemination of scientific understanding to new audiences in a way that gives a visceral sense of the underlying concepts. The human brain is massively complex and challenging to portray clearly. Conveying a sense of its complexity through art may inspire an interest in the brain's scientific content and inspire a new generation of neuroscientists. To produce a piece of fine art capable of sufficient detail to depict the brain at near full complexity, the piece will be executed by a technique called reflective microetching. Microetching is a high-resolution lithographic process that patterns a microtopography of periodic ridges into the surface. These ridges are engineered to reflect a point-source illumination toward a viewer when standing at a specific angle relative to the painting. Similar to darkfield microscopy, this can yield incredibly fine detail. Additionally, the angular dependence of the light adds an extra dimension that can be used to convey time, depth, or motion as the viewer walks past. The piece will feature neurons, glia, vasculature, white and gray matter, and reflectively animated circuit dynamics between areas of the brain corresponding to neural processes involved in visual self-recognition. This will infuse the piece with additional meaning, as the circuits activated within viewers' brains will be the same that are depicted in the artwork.
DATE: -
TEAM MEMBERS: Brian Edwards Gregory Dunn
resource project Exhibitions
This CRPA award addresses the exciting contemporary chemical science that occurs in interstellar space. The new interferometers coming online this year will enhance this new area of science and further intrigue those who engage. The plan in this award is to build an exhibit that will interest the audience with the space-based aspects, but will also engage them in understanding the chemistry that occurs in space. This is a collaborative effort between the University of Virginia and the Harvard-Smithsonian Astrophysical Observatory. The exhibit is relatively small facilitating its mobility. Thus, the authors will travel the exhibit to smaller venues in rural areas and embrace citizens who are typically under-served by educational opportunities of ISE venues. The target audience is 12-15 year old youths. Clearly, this project is meant to engage the public in both Space science and Chemistry with the ultimate hope that some individuals will even think about careers in the joint science field that is emerging from these types of behaviors.
DATE: -
TEAM MEMBERS: Alex Griswold Brooks Pate Edward Murphy Robert Tai
resource project Media and Technology
Virtual Missions and Exoplanets (vMAX) will develop and test a three-dimensional, virtual world environment that will engage middle school students and educators from high-poverty schools in NASA-related exoplanet mission simulations. The Patricia and Phillip Frost Museum of Science will serve as the lead institution, in partnership with the following institutions: U.S. Space and Rocket Center, New York Hall of Science, Chabot Space & Science Center, and Sci-Port: Louisiana¹s Science Center; Aimee Weber Studios will be responsible for virtual exhibit fabrication, and WestEd will serve as the project¹s formative and summative evaluator. The overall goal of the project is to create a NASA resource on exoplanet astronomy that will engage students, educators, and the general public in NASA¹s search for worlds beyond our own. The project aims to increase underserved students¹ engagement in STEM, knowledge of exoplanet missions, and awareness of NASA-related careers; and advance the growing body of knowledge on the use of virtual world technologies to provide opportunities for students to participate in NASA Mission-related science teaching and learning. The project will result in the development of vMAX world, a virtual world with simulations related to exoplanet astronomy designed for use as the core content of a 30-hour out-of-school learning experience for middle school students. An Educator Implementation Guide will be developed and made available online for download by secondary school teachers and science museum educators. In addition, an interactive, multiuser exhibit kiosk, utilizing the simulations created for vMAX world, will be developed and made available to interested Visitor Centers, museums and planetariums.
DATE: -
TEAM MEMBERS: Judy Brown
resource project Media and Technology
The Michigan Science Center (MiSci) Sunstruck! An Integrated Solar Education Experience project includes an interactive heliostat exhibit, Dassault Systemes Planetarium program for primarily middle school students and the general public emphasizing the sun and its effects on Earth and the solar system, a educational lobby kiosk, and educational materials for classroom use aimed at helping them understand the importance of understanding our nearest star and the ‘space weather’ that it creates. The Michigan Science Center is the lead institution, with the project led by PI Dr. Tonya Matthews, President/CEO and Co-PI Julie Johnson, Director of Education and Outreach, and science advisors representing University of Michigan College of Engineering Department of Atmospheric, Oceanic and Space Sciences, and in collaboration with the Ford Amateur Astronomy Club, the Detroit Public Schools Science Department and University Prep Science and Math faculty. The project Sunstruck! An Integrated Solar Education Experience will use the latest research and discoveries from IRIS (Interface Region Imaging Spectrograph) and SOD (Solar Dynamics Observatory ) missions to engage the general public in the dynamics of our star, the Sun. The project will help the audience understand the Sun’s importance, it’s direct impact on our lives and the potential hazards such as solar flares and coronal mass ejections that we refer to as ‘space weather’. This project is scheduled to be completed in 2015 with testing of materials and the planetarium show to begin late 2014.
DATE: -
TEAM MEMBERS: Tonya Matthews Julie Johnson
resource project Public Programs
STEMtastic: NASA in Our Community is a two-year project designed to educate and inspire teachers, students and life-long learners to embrace NASA STEM content. The project will increase awareness of NASA activities, while educating and inspiring students to train for careers that are critical to future economic growth of the country in general, and NASA’s future missions in particular. The Virginia Air & Space Center (VASC) will partner with the Virginia Space Grant Consortium and Analytical Mechanics Associates, Inc. to accomplish this project. VASC will deliver NASA STEM content through (1) STEMtastic Teacher Institutes and Education Modules: (a) a series of two five-day professional development institutes for educators which will result in the (b) development and dissemination of new education modules for grades 4-9; and (2) STEMtastic Exhibits and Demonstrations: new interactive exhibits to used for live demonstrations at VASC; those demonstrations will also be delivered to traditionally underserved schools in the region. All classroom and teaching materials—educator institutes, education modules, exhibit software and demonstration modules—will be developed using NASA content and shared with other institutions to promote the expansion of knowledge about best practices in providing STEM education in both formal and informal education settings. STEMevals, a robust evaluation plan, will be implemented to assess success in each project area. Adjustments will be made along the pipeline to increase effectiveness in reaching the target audience. The project has the potential to reach countless educators, students and museum visitors throughout the U.S."
DATE: -
TEAM MEMBERS: Brian DeProfio Danielle Price
resource project Public Programs
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
DATE: -
TEAM MEMBERS: Ellen Lettvin
resource project Exhibitions
A team from Michigan State University, in partnership with six science, art-science, and art museum venues around the country and with the assistance of researchers at Georgia Institute of Technology, is implementing an EAGER project to conduct ongoing experiments on the chemical precursors to life as exhibit experiences for visitors to these venues. The experiments, to be run over the course of several months as the exhibit travels around the country, expand on the 1950s' work of Stanley Miller and Harold Urey, which continues to stimulate new investigations and publications, including experiments being conducted on the International Space Station. The experiments/exhibits share key features across the three different kinds of venues, allowing the team to study and compare the impacts on the various publics of engaging them in real-time science experiments. Two major goals are (1) to explore new ways to attract public interest in science by performing in public settings previously untried experiments on the chemical precursors to life, and (2) to investigate how the context of different kinds of venues and their visitor characteristics affect how visitors interpret the experience and what they learn. The team is also exploring how various data visualization representations can be designed to foster public interest and understanding. The intent is to develop an approach that has potential applications to other STEM content domains and expanding the reach to broader public audiences.
DATE: -
TEAM MEMBERS: Michigan State University Robert Root-Bernstein Adam Brown Maxine Davis