Skip to main content

Community Repository Search Results

resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Media and Technology
This workshop is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a two-day workshop that will gather citizen science project leaders to address barriers in citizen science research and infrastructure: The inability to holistically study the movement, engagement, persistence and learning outcomes among volunteers engaged in multiple projects. The past few years have been a time of tremendous growth in awareness of and interest in citizen science projects. The project will address an increasing gap preventing projects in three now-popular categories (apps, projects hosted on government websites, and event-based projects) from adopting the digital tools created and available through SciStarter.com. The workshop will bring citizen science project leaders together to deepen an understanding of their needs regarding the adoption of digital tools, developed by Scistarter, which will result in more comprehensive data in support of research in informal science learning outcomes of volunteers engaged in citizen science across projects and platforms. The in-person and online contributions from participants will guide the development of resources and tutorials to scale adoption.

SciStarter is a repository of hundreds of citizen science projects. Through previous NSF support, SciStarter developed digital affiliate tools which project leaders use on their own websites to enable analytics (statistics gathered from user activity online) to help projects more easily recruit and coordinator volunteers, help volunteers track their contributions across projects and platforms, and help researchers holistically study the movement and learning outcomes across projects and platforms. The proposed workshop will facilitate iteration and adoption of the tools among three classes of projects, not originally accounted for, which have dramatically increased in numbers during the past year: 1) app-based projects, 2) projects hosted on government websites, and 3) event-based projects.. By co-designing and implementing iterative versions of the tools among these projects, the project will address important gaps in research, enable a richer, more comprehensive understanding of volunteer engagement patterns, and discover opportunities to build a stronger community of citizen science practitioners who collaborate to enhance volunteer learning communities. The project will culminate in improved research in this field and improved management of citizen science projects for appropriate recruitment and retention that fosters STEM learning.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Public Programs
In this article, The North American Association for Environmental Education (NAAEE) shares the programs and publications it developed to advance E-STEM—the integration of environmental education into STEM.
DATE:
TEAM MEMBERS: Kristen Kunkle
resource research Public Programs
This article discusses the Youth in Science Action Club (SAC), which uses citizen science to investigate nature, document their discoveries, share data with the scientific community, and design strategies to protect the planet. Through collaborations with regional and national partners, SAC expands access to environmental science curriculum and training resources.
DATE:
TEAM MEMBERS: Laura Herszenhorn Katie Levedahl Suzi Taylor
resource project Public Programs
Recharge the Rain moves sixth through twelfth grade teachers, students and the public through a continuum from awareness, to knowledge gain, to conceptual understanding, to action; building community resiliency to hazards associated with increased temperatures, drought and flooding in Arizona. Watershed Management Group with Arizona Project WET will utilize NOAA assets and experts from the National Weather Service and Climate Assessment for the Southwest (CLIMAS) to inform citizens and galvanize their commitment to building a community, resilient to the effects of a warming climate. Project activities will be informed by Pima County’s hazard mitigation plan and planning tools related to preparing for and responding to flooding and extreme heat. Starting January 2017, this four-year project will 1) develop curriculum with Tucson-area teachers that incorporates systems-thinking and increases understanding of earth systems, weather and climate, and the engineering design of rainwater harvesting systems 2) immerse students in a curricular unit that results in the implementation of 8 teacher/student-led schoolyard water harvesting projects, 3) train community docents in water harvesting practices and citizen-science data collection, 4) involve Tucson community members in water harvesting principles through project implementation workshops, special events, and tours, and 5) expand program to incorporate curriculum use in Phoenix-area teachers’ classrooms and 6) finalize a replicable model for other communities facing similar threats. Environmental and community resiliency depends upon an informed society to make the best social, economic, and environmental decisions. This idea is not only at the core of NOAA’s mission, but is echoed in the programs provided by Watershed Management Group and Arizona Project WET.
DATE: -
TEAM MEMBERS: Catlow Shipek
resource project Public Programs
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.

This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
DATE: -
TEAM MEMBERS: Carolyn Brinkworth Heather Lazrus Rebecca Haacker-Santos Daniel Wildcat Kyle Whyte Kevin Bonine
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Media and Technology
This project will research factors influencing the implementation of programs designed to increase diverse participation in informal science. The goal is to provide the informal science education field with information and tools that will help them design effective programs that more effectively engage a broad range of diverse audiences. The project has two major components. First, the project will research the implementation of a citizen science project, Celebrate Urban Birds (CUB), in major U.S. cities. Citizen science projects involve public volunteers in gathering scientifically valid data as part of ongoing research. Second, building on results of the research, the project will launch a website and learning community (called a Community of Practice or CoP) supporting informal science educators that are involved in designing and implementing informal science programs with an emphasis on engaging diverse participants. The project will be lead by the Cornell Lab of Ornithology (CLO), a leader in designing and researching citizen science projects, in collaboration with the Association of Science-Technology Centers (ASTC) and five science center members of ASTC, where the CUB program will be implemented and researched. The objective of the research is to better understand contextual factors and how they impact implementation even when accepted practices are followed. Such research is key not only to revealing accepted practices but also to understanding how projects are implemented in the face of concrete operational, cultural, economic, and demographic variables. The research will use a comparative case study approach, which is designed for studies requiring holistic, in-depth investigation. The development of the website and the CoP will be guided by a Network Improvement Strategy, a research-based approach to designing educational CoPs. The development of the CoP will involve the project stakeholders including the informal science organization practitioners, community organization representatives, CUB staff, ASTC staff, advisors and consultants. This strategy will allow the project team and pilot sites to leverage their diverse experiences and skill sets to improve practice; provide space for researchers and practitioners to work together as partners; and develop a nuanced set of strategies that can be implemented across a variety of organizational contexts.
DATE: -
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer