Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Professional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.

The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.

This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
DATE: -
resource project Professional Development, Conferences, and Networks
The National Science Foundation (NSF) Climate Change Education Partnership Alliance (CCEPA) is a consortium made up of the six Phase II Climate Change Education Partnership (CCEP-II) program awardees funded in FY 2012. Collectively, the CCEPA is establishing a coordinated network devoted to increasing the adoption of effective, high quality educational programs and resources related to the science of climate change and its potential impacts. The establishment of a CCEPA Coordination Office addresses the need for a coordinating body that leverages and builds upon the CCEPA projects' individual initiatives. The CCEPA Coordination Office facilitates interactions to leverage a successful network of CCEP-II projects and individuals engaged in increasing climate science literacy. The efforts of the Coordination Office advance knowledge and understanding of how to effectively network related, but different, projects into a cohesive enterprise. The goal is to coordinate a functional network, where the whole is greater than the sum of the parts.

The CCEPA Coordination Office at the University of Rhode Island is helping to move the CCEPA network forward on a number of key initiatives that strengthen it, reduce duplication, and enhance its overall impact. An important role of the Coordination Office is the facilitation of the transfer of best practices between projects. An effective network forges collaborations and establishes communities of practice through network working groups, building intellectual capital network-wide. The CCEPA Coordination Office has a key role in assisting the CCEPA project PIs and staff to disseminate the results of their work. Partnerships with other relevant societies and organizations assist the Coordination Office in identifying opportunities and synergies for sharing, disseminating, and leveraging network products as well as best practices that emerge as Earth system science education models and tools are evaluated. This endeavor broadens the collective impact of the individual projects across the country.
DATE: -
TEAM MEMBERS: Gail Scowcroft
resource project Public Programs
Portal to the Public: Expanding the National Network (PoP: ENN) is implementing around the county the successful NSF-funded Portal to the Public model in which researchers are trained to communicate and interact with the general public at informal science education (ISE) institutions about the research that they are conducting. The project, which follows on a thorough evaluation of the model at eight sites and current implementation at an additional fifteen sites, will incorporate twenty new ISE sites into the growing network, provide training and mentorship to ISE professionals on the use and adaptation of the PoP implementation manual and toolkits, and develop an enhanced network website that will serve as a communication and innovation hub. The work is responsive to the needs and activities of ISE organizations which continue to expand their missions beyond presenting to the public established science, technology, engineering and math (STEM) and are working to become places where visitors can also experience the process and promise of current research via face-to-face interactions with researchers. The project is expanding both the kind and number of institutions involved around the country and is facilitating their capacity to develop a knowledge base, share experiences and best practices.
DATE: -
resource project Professional Development, Conferences, and Networks
The Cyberlearning Resource Center (CRC) has responsibility for promoting integrative collaboration among cyberlearning grantees (across NSF programs); synthesis and national dissemination of cyberlearning findings, technologies, models, materials, and best practices; creating a national presence for Cyberlearning; helping the disparate Cyberlearning research and development communities coordinate efforts to build capacity; and providing infrastructure (technological and social) for supporting these efforts. Monitored through the Cyberlearning: Transforming Education program, the CRC serves as a resource for all NSF grantees and programs with cyberlearning components, helping to promote synergy and integrate projects across NSF's cyberlearning investments. Among society's central challenges are amplifying, expanding, and transforming opportunities people have for learning and more effectively drawing in, motivating, and engaging young learners. Engaging actively as a citizen and productively in the workforce requires understanding a broad variety of concepts and possessing the ability to collaborate, learn, solve problems, and make decisions. Whether learning is facilitated in school or out of school, and whether learners are youngsters or adults, to develop such knowledge and capabilities, learners must be motivated to learn, actively engage over the long term in learning activities, and put forth sustained cognitive and social effort. Consistent with NSF's mission and strategic plan, a variety of programs at NSF invest in research aimed towards achieving these goals. In support of this important thematic thrust, the Cyberlearning Resource Center works with researchers and NSF program officers to identify and disseminate findings from across programs and projects; develop ways to broker productive partnerships and collaborations; convene meetings for purposes of envisioning the future, integrating findings, and building capacity,; and monitor the cyberlearning portfolio and its influences and impacts.
DATE: -
TEAM MEMBERS: Jeremy Roschelle Patricia Schank Sarita Nair-Pillai Marianne Bakia
resource project Public Programs
EvalFest (Evaluation Use, Value, and Learning through Festivals of Science and Technology) will test innovative evaluation methods in science festivals that are being held across the country and assess in what ways and how effectively they are used. Morehead Planetarium and Science Center (at the University of North Carolina-Chapel Hill) and the University of California, San Francisco, in collaboration with over twenty science festivals, will (1) investigate whether a multisite evaluation approach is an effective model for creating common metrics for informal STEM education, (2) develop common methods to measure the effects of Festivals, (3) create a query-able database of 50,000 Festival attendees to share with the informal STEM learning field, and (4) document whether these efforts also result in new knowledge related to informal STEM education. The project will develop the Enterprise Feedback Management (EFM) system and query-able database for the festival community. EFMs are systems, including processes and software, that enable groups (such as the festival network) to collect, organize, analyze and share data. The EFM system will be designed to integrate data across sites and to allow users to extract data of interest. The project will refine evaluation tools currently used within the Science Festival Alliance that assess self-reported festival learning, and the effects of festival attendance, motivation, and future science participation. It will collect economic impact data and longitudinal festival attendee data. The project will also develop some new evaluation tools such as secret shopper observational protocols. Data from festival attendees will be collected onsite at participating festivals.
DATE: -
resource project Public Programs
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
DATE: -
TEAM MEMBERS: Jan Mokros Sue Allen
resource project Public Programs
This research project establishes a new research center, the InforMath Collaborative, that brings together university educational researchers and professionals at art and science museums in San Diego's Balboa Park. The InforMath Collaborative is investigating and building the capacity of informal learning institutions to support content and identity learning in mathematics. Through sustained collaborations that unite research, design, and professional development, members of the InforMath Collaborative are conducting design-based research on exhibits and programs that integrate art and science content from participating museums with the mathematics of topology and projective geometry.

The broader goal of the InforMath Collaborative is to transform cultural perceptions of mathematics in ways that broaden learners' access to the discipline. The project aims to develop informal mathematical learning experiences that make mathematics feel accessible, body-based, creative, and deeply relevant to a wide array of other knowledge domains, including both art and science. The project will build and strengthen regional and national networks of educational professionals who work in informal mathematics learning and expand the capacity of informal institutions to support engaging, innovative, content-rich, and culturally transformative mathematical learning experiences.
DATE: -
TEAM MEMBERS: Ricardo Nemirovsky Paul Siboroski Molly Kelton