Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The University of Washington, the Exploratorium, the Education Development Center, Inverness Research, and the University of Colorado - Boulder have come together to form a Research+Practice (R+P) Collaboratory. The Collaboratory seeks to address and reframe the gap between research and practice in K-12 STEM education. This gap persists despite decades of work by many leading organizations, associations, and individuals. Attempts to close the gap have generally focused on creating resources and mechanisms that first explain or illustrate "what research says" and then invite educators to access and integrate findings into practice. Recently, however, attention has turned to the ways in which the medical sciences are addressing the gap between research and clinical practice through the developing field of "translational research." In medicine, the strategy has been to shift the focus from adoption to adaptation of research into practice. Implicit in the notion of adaptation is a bi-directional process of cultural exchange in which both researchers and practitioners come to understand how the knowledge products of each field can strengthen the professional activities in the other. Along these lines, the R+P Collaboratory is working with leading professional associations and STEM improvement efforts to leverage their existing knowledge and experience and to build sustainable strategies for closing the gap. Activities include:


Collecting, creating and synthesizing translational research resources to expand STEM educators' and educational leaders' access and awareness to current relevant research.
Supporting multiple opportunities for cross-sector (research and practice; education and social sciences; formal and informal) meetings to foster critical engagement and cultural exchange.
Testing, documenting and innovating new resources and mechanisms at Adaptation Sites and disseminating both products and results through the R+P Resource Center.


The R+P Collaboratory is developing an online 'Go-To' Resource Center website that houses the resources collected, created, and curated by the Collaboratory. The Resource Center also has significant 'Take-Out' features, with all materials meta-tagged so that they can be automatically uploaded, reformatted, and integrated into the existing communication and professional development mechanisms (e.g., newsletters, digests, conferences, and websites) of a dozen leading professional associations within a Professional Association Partner Network.

In light of new and emerging standards in the STEM disciplines, the Collaboratory is focusing its work on four salient and timely bodies of research: (a) STEM Practices, (b) Formative Assessment, (c) Cyberlearning, and (d) Learning as a Cross-Setting Phenomenon. Special emphasis is being placed on research and practice that focuses on the learning of children and youth from communities historically underrepresented in STEM fields.

The work of the R+P Collaboratory includes research and evaluation of its own efforts through studies aimed at answering the following questions:


How are Collaboratory resources and engagement activities accessed, experienced and leveraged by participants?
What resources, mechanisms and learning contexts support cultural exchange among STEM education researchers and practitioners?
What new kinds of practices result when research-based evidence is adapted into evidence-based practices, and how does it change learning opportunities for K-12 aged children?
How can effective strategies, mechanisms and resources of the Collaboratory be scaled and adapted to new contexts?
DATE: -
resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.

Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.

The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
DATE: -
TEAM MEMBERS: Rita Karl Brenda Britsch Siri Anderson
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Public Programs
Science Club Summer Camp (SC2) is a practicum-based teacher professional development program for elementary school teachers, aligned to the recently released Next Generation Science Standards (NGSS). It seeks to address well-described gaps in the scientific training of elementary teachers that threaten the effective implementation of NGSS and interrupt development of early youth science skills. We offer that the best way to prepare a future STEM and biomedical workforce is to help improve NGSS-aligned instruction at the K-5 level.
SC2 uses an integrated approach to train Chicago Public School teachers and youth in the nature of science. An interdisciplinary team of scientists, master science teachers, NGSS experts, and youth development staff will collaborate to incorporate the NGSS Disciplinary Core Ideas (DCIs), Crosscutting Concepts, and science and engineering practices into both out-of-school time learning at a summer camp and academic year instruction. Program participants will also learn about NGSS connections to health and biomedicine through interactions with practicing scientists, visits to research labs, and inquiry into health phenomena.

Over the course of the program, we will train 64 teachers and more than 2000 youth in authentic science and health practices. A multi-faceted evaluation plan will assess the impact of our program on teacher beliefs, knowledge, and understanding of the NGSS, and the degree to which their training results in changes to their instructional practice. Additionally, we will help teachers design critical NGSS-aligned assessment tools as measures of student learning. These instruments will provide early evidence on the connections between NGSS-aligned instruction and deeper student learning.

In addition to addressing the acute need for NGSS-aligned teacher professional development strategies, and high quality summer learning opportunities for disadvantages youth, it is our expectation that this “dual use” approach will serve as a model for future teacher professional development programs that seek to bridge learning in formal and informal environments and strengthen academic-community partnerships.
DATE: -
TEAM MEMBERS: Michael Kennedy Rebecca Dougherty
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource project Public Programs
The goal of the Hawaii Science Career Inspiration grant (HiSCI) is to enhance science education resources and training available to teachers and students in disadvantaged communities of Hawaii in order to ensure a maximally large and diverse workforce to meet the nation’s biomedical, behavioural and clinical research needs. The HiSCI Program will build on the knowledge gained from two past SEPA grants and the University of Hawaii Center for Cardiovascular Research and leverage resources from all corners of the state to accomplish four specific aims:

1) Increase student interest and exposure to health science careers by providing multiple science exposure opportunities and mentoring along the primary, intermediate, and secondary school experiences for at least 300 students a year and a printed and web-based STEM career resource guide and career posters to alert students, counsellors and teachers to all available opportunities;

2) Provide professional development for 20 middle and high school teachers a year, to include scientific content and foster an understanding of the scientific research process, in addition to medical students mentoring intermediate and high school students;

3) Listen, respond to, and connect the science teacher community in Hawaii by holding innovative listening groups for teachers across the state; and

4) Provide tools and supplies for at least twenty K-12 classrooms a year through a mini-grant process and alert teachers across the state to free resources both locally and nationally. The HiSCI Program is highly relevant to Hawaii’s public health and science infrastructure as it will provide an innovative way to gain knowledge of science training needs and will provide many of the resources to teachers and students across the state by leveraging, communicating and sharing existing resources.
DATE: -
TEAM MEMBERS: Kelley Withy Rachel Boulay
resource project Media and Technology
This project will research factors influencing the implementation of programs designed to increase diverse participation in informal science. The goal is to provide the informal science education field with information and tools that will help them design effective programs that more effectively engage a broad range of diverse audiences. The project has two major components. First, the project will research the implementation of a citizen science project, Celebrate Urban Birds (CUB), in major U.S. cities. Citizen science projects involve public volunteers in gathering scientifically valid data as part of ongoing research. Second, building on results of the research, the project will launch a website and learning community (called a Community of Practice or CoP) supporting informal science educators that are involved in designing and implementing informal science programs with an emphasis on engaging diverse participants. The project will be lead by the Cornell Lab of Ornithology (CLO), a leader in designing and researching citizen science projects, in collaboration with the Association of Science-Technology Centers (ASTC) and five science center members of ASTC, where the CUB program will be implemented and researched. The objective of the research is to better understand contextual factors and how they impact implementation even when accepted practices are followed. Such research is key not only to revealing accepted practices but also to understanding how projects are implemented in the face of concrete operational, cultural, economic, and demographic variables. The research will use a comparative case study approach, which is designed for studies requiring holistic, in-depth investigation. The development of the website and the CoP will be guided by a Network Improvement Strategy, a research-based approach to designing educational CoPs. The development of the CoP will involve the project stakeholders including the informal science organization practitioners, community organization representatives, CUB staff, ASTC staff, advisors and consultants. This strategy will allow the project team and pilot sites to leverage their diverse experiences and skill sets to improve practice; provide space for researchers and practitioners to work together as partners; and develop a nuanced set of strategies that can be implemented across a variety of organizational contexts.
DATE: -
resource project Public Programs
Due to geographical isolation, rural communities are often underserved by the informal STEM (science, technology, engineering, and mathematics) education system. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings including rural communities. Thus, this project will help to develop rural libraries and librarians into STEM learning centers and facilitators who will use community assets providing new horizons for youth on career choices and adults on an enhanced STEM knowledge base. Through online professional development exercises, the library staff will enhance their knowledge, enabling them to develop and support new STEM learning mechanisms in their communities. In this project, 110 rural libraries will be chosen from applicants to obtain advanced knowledge of how to facilitate STEM learning. It is anticipated that the staff will change from being resource persons to facilitators of STEM knowledge transfer. The project is a collaboration between Dartmouth College, Dominican University, the Institute of Learning Innovation, Dawson, Media Group, and the Califa Group. The research questions address: a quantitative assessment of rural librarian's STEM efficacy and professional identity, and a determination of the efficacy and impact of multiple forms of professional development and learning tools on rural librarians' ability to participate in and facilitate informal STEM learning.
DATE: -
TEAM MEMBERS: Daniel Rockmore Karen Brown John H Falk Meighan Maloney
resource project Media and Technology
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.
DATE: -
TEAM MEMBERS: Katie Davis
resource project Public Programs
The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
DATE: -
TEAM MEMBERS: Phil Engen