Skip to main content

Community Repository Search Results

resource evaluation Exhibitions
Funded by the Institute of Museum and Library Services, the Access from the Ground Up project at the Palo Alto Junior Museum & Zoo (JMZ) seeks to better serve children with disabilities through a combination of partnerships with community, staff professional development and training, and the development of accessible STEM-focused exhibits and resources at the new JMZ facility, which opened in November 2021. This summative evaluation report seeks to answer the following evaluation questions: To what extent does the Access from the Ground Up project build or strengthen relationships with
DATE:
TEAM MEMBERS: Maia Werner-Avidon Tina Keegan Lisa Erikson
resource project Public Programs
Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project addresses the following two objectives:


For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.


The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.

AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:


broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.


Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sheryl Burgstahler Meena Selvakumar
resource project Media and Technology
Focusing on climate change and its impact on coastal zones and marine life, Visualizing Change will build educator capacity in the aquarium community and informal science education field. Building on NOAA datasets and visualizations, we will provide interpreters with strategic framing communication tools and training using the best available social and cognitive research so that they can become effective climate change educators. Objectives are to (1) Develop and test four exemplary interpretive "visual narratives" that integrate research-based strategic communication with NOAA data visualization resources; (2) Test the application of the visual narratives in a variety of geographic regions, institution types (aquarium, science center, etc.), and using multiple technology platforms (Science on a Sphere, Magic Planet portable globe display, iPad/tablets, and video walls); (3) Build a professional development program for climate change interpretation with data visualization; and (4) Leverage existing networks for dissemination and peer support.
DATE: -
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource research Media and Technology
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
DATE:
TEAM MEMBERS: Steven Walvig Beth Murphy Melanie Peters Abby Moore
resource research Media and Technology
Science and technology: these are the mainstays China wants to concentrate on in order to stabilise its future as an emerging world power. Beijing plans to have the whole, enormous Chinese population literate in the scientific field within a few years. Scientific popularization is the key to what now, due to political influences and deep social disparities, seems remote.
DATE:
TEAM MEMBERS: Nico Pitrelli
resource research Public Programs
Nine cultural institutions in one metropolitan community worked together on a study to determine what motivates museumgoers, using John Falk’s visitor-identity model as their theoretical guide and analytical instrument. The results prompted the individual institutions to reflect on their programme development and learning outcomes, their marketing strategies, and their staff professional development.
DATE:
TEAM MEMBERS: Heather King
resource research Public Programs
Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations-they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum interactions within the context of the school field trip, there is limited research that examines other ways that such institutions might support classroom teachers. A growing number of studies, however, examine how incorporating such ideas of connections
DATE:
TEAM MEMBERS: James Kisiel
resource project Public Programs
Climate change science is becoming a more frequent and integral part of the middle school curriculum. This project, NASA Data in My Field Trip, proposes to leverage a regional network of Informal Science Institutions (ISIs) committed to climate change education, the Global Climate Change Consortium (GC3). This project will support climate change education in the formal curriculum by creating opportunities for inquiry-based exploration of NASA data and products in class and as part of already established field trip experiences to ISIs. The ISIs of the recently formed GC3 include a broad range of science-based institutions including Carnegie Museum of Natural History (CMNH), Carnegie Science Center (CSC), Phipps Conservatory and Botanical Gardens, National Aviary, and the Pittsburgh Zoo and PPG Aquarium. Partners, Pittsburgh Public Schools and Wilkinsburg School District have respectively 70 and 99% minority populations. NASA Data in My Field Trip will build innovative connections among NASA data and products, ISI resources and experiences, curriculum standards, and educators in formal and informal environments. It has three components: (1) joint professional development for formal and informal educators, (2) in-class pre-field trip data explorations, and (3) the integration of NASA resources into ISI field trip experiences. In the first phase of NASA Data in My Field Trip, CMNH and CSC will pilot NASA resources as central components of middle school climate change field trips as well as in pre-visit experiences. In the second phase, three other GC3 ISIs will tailor the pilot products to their climate change field trips. In both phases, formal and informal educators will participate in joint professional development. Alignment with the school districts' curriculum and formative evaluation is critical at all steps of this project and will guide and inform the implementation of the project through both phases. The success of the project will be measured in terms of (1) educators’ attitudes toward and ability to use NASA resources, (2) the effectiveness of in-class and field trip experiences for students, (3) the development of a community of practice among informal and formal educators, and (4) the adoption of NASA data and products into informal and formal programming outside of the project’s specified reach. Primary strengths of this project are that it brings NASA resources to underserved schools and includes ISIs that have a commitment to climate change education but have not previously connected with NASA or its resources. Techniques developed in this project will be tailored to a diversity of ISIs and can therefore serve as a replicable model for NASA products throughout the ISI field.
DATE:
TEAM MEMBERS: Kerry Handron Ellen McCallie John Radzilowicz Pittsburgh Public Schools Wilkinsburg School District Pittsburgh Zoo and PPG Aquarium National Aviary Phipps Conservatory and Botanical Gardens
resource project Public Programs
The University of Washington’s Museology Program, in partnership with the Woodland Park Zoo and the Learning in Informal and Formal Environments Research Center is developing a model of university-community collaboration where students work with client museums, zoos and aquaria to evaluate exhibits and programs under the guidance of a research mentor. Students will gain experience in audience research and evaluation, as well as in project management, collaboration, and leadership. Staff at participating museums will advance their personal knowledge about visitors and the field of museum evaluation. The project will prepare a new generation of evaluators and museum practitioners through an innovative apprentice-styled laboratory that integrates the strengths of mentoring, fieldwork, academics, and client-centered experiences. Project Advisors include John Falk, Julie Johnson, Randi Korn, Marjorie Schwarzer, and Patterson Williams. Project started January, 2009 with 24 graduate students in the first cadre.
DATE:
TEAM MEMBERS: kris morrissey Reed Stevens Kathryn Owen Alexandra Criado Nick Visscher Alex Curio Jessica Newkirk Elizabeth Rosino Marta Beyer Erin Wilcox Andrea Godinez Amanda Mae Amanda Dearolph