Skip to main content

Community Repository Search Results

resource project Public Programs
Water for Life (WfL) is a full scale development youth and community based program; centered on freshwater literacy, water conservation and rainwater harvesting led by the Pacific Resources for Education Learning (PREL) in Hawaii. The goals of the project are to: (a) promote an understanding of water conservation and stewardship in areas lacking adequate quality water supplies and (b) build local capacity among rural communities to develop and employ site specific freshwater harvesting strategies proven to improve water quality. Rural communities within four Pacific Island entities in the U.S. affiliated Freely Associated States (FAS) will participate in WfL activities. PREL is collaborating with a host of organizations (such as the Federated States of Micronesia National Department of Education, Marshall Islands Conservation Society, and the Micronesian Conservation Trust, etc.) to develop and implement all phases of the initiative. This work is already improving the quality of life for hundreds of people in the FAS through water conversation education and improved water quality in local areas. Working closely with site-embedded PREL staff, Core Teams at each site - consisting of 4-6 local leaders from environmental agencies, water/sanitation systems, and education institutions - participated in a 5-day professional learning immersion in May, 2013, to buld capacities to develop and facilitate water conservation and catchment activities at the four target sites in the FAS. The Core Team members at each site now are recruiting and collaborating with local community members to implement site-specific projects that both educate and provide enhanced access to high quality drinking water. Both adults and youth are now engaging in a spectrum of proejcts that address loca needs and priorities through site-specific service learning activities. The site-specific focus in each locale, determined by the local Core Team, is distinct. In Palau, the Core Team has built broader community awareness of water conservation issues, raised the issue of water security in national conversations, engaged remote communities in improving natural rainwater drainage collection systems, and produced youth-oriented educational materials focused on local sites. In Yap, the Core Team members have collaborated with public utilities to install first-flush diverters into community rainwater catchment systems on Yap proper, and now are installing these devices in rainwater catchment systems on Yap's neighbor islands. In Chuuk, groundwater springs in remote communities are being upgraded for improved storage capacity, protection against contamination, and better public access. In Majuro (RMI), public school rainwater catchment systems are being repaired, repainted, cleaned, and upgraded so that schools can and will provide adequate drinking water to students (and to broader segments of the community during droughts). Broad segments of communities, including school classes and clubs, church and civic groups, etc. are becoming increasingly involved in building better water security and resilience for their communities, in preparation for a predicted drought, predicted to hit in the winter of 2014-2015, brought on by an El Nino event now edevelopig in the eastern Pacific. Water for Life has produced a range of locally relevant educational materials, including books, pamphlets, flyers, etc., some in English and others in local languages. Posters and billboards are being produced to enhance and maintain public awareness. Infrastructure projects are enabling better collection of more, higher quality water for drinking. A full-scale water handbook is under development, and this will serve as a basis for a self-contained water 'course' that will be offered through local community colleges. The experiences of project participants are being captured, analyzed, and reported in front-end, formative, and sumative evaluations conducted by David Heil & Associates. Thousands of individuals, comprising large segments of the participating countries' populations, will be directly impacted by the project. The results will be applicable to other remote and rural communities outside of the Pacific distressed by poor water quality and ineffective freshwater harvesting systems.
DATE: -
TEAM MEMBERS: Ethan Allen Danko Taborosi
resource research Public Programs
The NISE Network has developed numerous activities and programs suggestions for the International Year of Light and Light-Based Technologies (IYL 2015). The International Year of Light and Light-Based Technologies (IYL 2015) is a global initiative that will highlight to the citizens of the world the importance of light and optical technologies in their lives, for their futures, and for the development of society. It is an unique opportunity to inspire, educate, and connect on a global scale.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource evaluation Media and Technology
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
DATE:
TEAM MEMBERS: WGBH Educational Foundation Sonja Latimore Christine Paulsen
resource research Media and Technology
Using data from interviews with 133 physicists and biologists working at elite research universities in the United States, we analyze narratives of outreach. We identify discipline-specific barriers to outreach and gender-specific rationales for commitment. Physicists view outreach as outside of the scientific role and a possible threat to reputation. Biologists assign greater value to outreach, but their perceptions of the public inhibit commitment. Finally, women are more likely than men to participate in outreach, a commitment that often results in peer-based informal sanctions. The study
DATE:
TEAM MEMBERS: David Johnson Anne Ecklund Anne Lincoln
resource research Public Programs
What would it be like to increase the number of youth-serving volunteers who can competently lead science, technology, engineering, and math (STEM) activities? This question guided the Inquiry in the Community project, launched in 2008. Along with Girl Scout staff colleagues and volunteers, the project created a system for embedding inquiry-based science into a youth development organization.
DATE:
TEAM MEMBERS: Stephanie Lingwood Jennifer Sorensen
resource research Public Programs
Grounded in literature on best practices in science education, this article describes a systematic and intentional approach to developing out-of-school time (OST) science curricula and professional development models. Examples from the California 4-H Science, Engineering, and Technology Initiative demonstrate promising practices in action.
DATE:
TEAM MEMBERS: Steven Worker Martin Smith
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS: New Jersey Academy for Aquatic Sciences Barbara Kelly
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource evaluation Public Programs
The MyBEST (Mentoring Youth Building Employable Skills in Technology) project, funded by a grant from the National Science Foundation's Informal Science Education program, concluded its three years of operation in 2006. This youth-based program was intended to provide participants with in-depth learning experiences involving information and design technologies. These experiences had a dual focus: enabling youth participants to gain fluency in using these technologies while showing them how adults apply them in work and academic endeavors. Appendix includes survey.
DATE:
TEAM MEMBERS: Elizabeth Xue
resource research Public Programs
This is a handout from the session "Unique Approaches to Community Engagement – Challenges, Successes, Lessons Learned" at the 2014 ASTC Conference held in Raleigh, NC. The handout includes presentation slides and the central questions discussed by each session contributor.
DATE:
TEAM MEMBERS: Dale McCreedy Gretchen Walker Patricia Ward Blake Wigdahl Jennifer Zoffel
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will further develop, roll out, and conduct research on a set of materials that will introduce middle school age youth to innovative and engaging engineering challenges in the Boys and Girls Club (B&GCs) context. Building on substantial prior work and evaluation-based learning, WISE Guys and Gals - Boys & Girls as WISEngineering STEM Learners (WGG) will: (1) combine engineering design activities with the (open source, online) WISEngineering infrastructure; (2) scale-up the infrastructure; (3) engage youth in informal afterschool experiences; and (4) collect a wealth of rich data to further our understanding of how youth learn through these experiences. This work will be conducted by Hofstra University's Center for STEM Research in conjunction with Brookhaven National Laboratory (BNL), The CUNY Graduate Center's Center for Advanced Study in Education (CASE), the Boys & Girls Club of America, and 25 B&GCs in New York and New Jersey. The underlying theoretical framework builds on proof-of-concept work supported by NSF and the Bill and Melinda Gates Foundation. An open source, on-line interface (WISEngineering) provides numerous virtual tools (e.g., social networking, Design Journal, embedded assessments) that promote learning and collaboration through challenging, thoughtful, and creative work. WGG will explore how to incorporate creativity, social networking, connections to real-world STEM needs/careers, and teamwork into challenges that can be completed in a one-hour period, an activity time constraint in many B&GC settings. Staff from the clubs will participate in face-to-face and virtual professional development in an effort to build their capacity as facilitators of STEM learning. Research will focus on: (1) how activities developed for 60-minute implementation and guided by informed engineering design and interconnected learning frameworks support youth learning and engagement; and (2) characteristics of the professional development approach that support B&GC facilitators' capacity development. By the end of the project, over 6,000 middle school aged youth, the majority from groups underrepresented in STEM areas, will gain experience with engineering design as they develop engineering thinking, new STEM competencies, STEM career awareness, and an appreciation for the civic value of STEM knowledge.
DATE: -
TEAM MEMBERS: David Burghardt Xiang Fu Kenneth White Melissa Rhodes
resource project Public Programs
The aim of this project is to create conversations in science museums among scientists, engineers, and public audiences about an emerging research field, synthetic biology. Synthetic biology applies science and engineering to create new biological systems, and re-design existing biological systems, for useful purposes. This is an important new area of research and development that raises societal questions about potential benefits, costs, and risks. Conversations between researchers and public audiences will focus not only on what synthetic biology is and how research in the field is carried out, but also on the potential products, outcomes, and implications for society of this work. Researchers and publics will explore personal and societal values and priorities as well as desired research outcomes so that both groups can learn from each other. Public participants will benefit from knowing about this field of research, and researchers will benefit from hearing public perspectives directly from the public participants. This project will be led by the Museum of Science with partners at the American Association for the Advancement of Science, the Synthetic Biology Engineering Research Center, the Science Museum of Minnesota, the Ithaca Sciencenter, and several other universities and science museums. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is aimed at pushing beyond traditional modes of communicating with public audiences rooted in "public understanding of science" modalities into the mechanisms and perspectives associated with "public engagement with science" (PES). The project will support informal educational institutions as facilitators of such PES activities through which mutual learning takes place among research experts and various publics. Formative evaluation will support the development of evaluation tools that practitioners can use themselves to measure impacts of public engagement activities on both scientist and public participants. Summative evaluation will measure the impacts of the project on informal science education practitioners and researchers participating in the development of the project. In the first year of the project, two kinds of engagement activities will be tested at eight pilot sites across the U.S. The first kind will be the focus of "showcase" events, in which researchers demonstrate and talk with museum visitors about the basics of synthetic biology and their research work. The second kind will be the focus of "forum" events in which the multi-directional conversations focus on societal implications and participants' priorities for maximizing the benefits of this new field while minimizing the risks. The work of the first year will inform development of a kit of public engagement materials that will support widespread public engagement with synthetic biology in the second year at up to 200 sites across the U.S. Successful practices and infrastructure developed by the Nanoscale Informal Science Education Network to support NanoDays events will be use for this broad dissemination of public engagement in synthetic biology in year 2. When the project is complete a set of tools and guides will be provided online for developing, implementing, and evaluating engagement events that bring scientists and publics together, specifically about synthetic biology, but adaptable to other emerging research topics. The informal science education field will have a better understanding of how to get scientists, engineers, and publics to engage together in discussions about the societal implications of emerging technologies, and how to evaluate the quality of that engagement for both the researchers and the publics involved. The project will also provide a sense of informed public views on societal issues related to synthetic biology that emerge through a variety of public engagement activities that take place in science museums.
DATE: -