Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
The CEDERS program is designed to prioritize community engaged scholarship in educational research projects led by postdoctoral fellows and done in collaboration with STEM researchers and community stakeholders.
DATE: -
TEAM MEMBERS: Shalaunda Reeves Courtney Faber Elizabeth Derryberry Frances Harper Stephanie Drumheller-Horton
resource project Higher Education Programs
This project centers on an Indigenous Scholars program, immersing students in land-based learning to deepen a relationship with their homeland while understanding how legal and political conflicts impact environmental and community health. Students will explore ways of knowing in language, mathematics, science, arts, and society and culture, through sessions led by scholars versed in Indigenous methodologies.
DATE: -
TEAM MEMBERS: Chris Meyer Dale Chess Laura Laumatia
resource project Media and Technology
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Public Programs
The Arizona-Sonora Desert Museum will partner with the Flowing Wells Unified School District on “We Bee Scientists,” a program to engage students in grades K–6 in real-world science by learning about bees—the most important group of pollinators. They plan to create a curriculum and related activities aligned with the Arizona science standards. The program is an expansion of the Tucson Bee Collaborative, which empowers community scientists from “K to grey” to contribute to ecosystem health and understanding through the study of native bees. The museum also will partner with Pima Community College and the University of Arizona on the program, which will involve volunteers and high school, college, and university students in documenting the abundance and diversity of native bees.
DATE: -
TEAM MEMBERS: Debra Colodner
resource project Public Programs
Stark inequities evident in the low representation of Black women in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) careers persist despite considerable investment in the diversification of the education-to-workplace STEMM pipeline. College participation rates of Black women measure 4-5% of all degrees in biological and physical sciences, 2-3% of degrees in computer science and math, and roughly 1% in engineering. Ultimately, Black women make up only 2.5% of the workforce in STEMM-related fields, indicating that they chronically experience stalled professional advancement. Because there are so few longitudinal studies in either formal or informal settings, educators and researchers lack critical insights into why BA/BS credentialed Black women drop out of STEMM careers at high rates upon entering the workforce. This Research in Service to Practice project will conduct a longitudinal examination of key professional outcomes and life trajectories among adult Black women who enrolled Women in Natural Sciences (WINS), a 40-year-old out-of-school time (OST) high school STEM enrichment program. Prior research on WINS documents that alumnae outperform national averages on all metrics related to STEMM advancement up through college graduation. This study will test the hypothesis that such success continues for these cohorts as they pursue life goals and navigate the workforce. Findings from this study will promote the progress of science, pivotal to NSF’s mission as the project builds knowledge about supportive and frustrating factors for Black women in STEMM careers. Strategic impact lies in the novel participant-centered research methods that amplify Black women’s voices and increase both accuracy and equity in informal STEM learning research.

This research probes the experiences of Black women at a critical phase of their workforce participation when BS/BA credentialed WINS alumnae establish their careers (ages 26-46). The team will conduct a longitudinal comparative case study of outcomes and life trajectories among 20 years of WINS cohorts (1995-2015). Research questions include (1) What do the life-journey narratives of WINS alumnae in adulthood reveal about influential factors in the socio-cultural ecological systems of Black women in STEMM? (2) What are the long-term outcomes among WINS women regarding education, STEMM and other careers, socio-economic status, and STEMM self-efficacy and interest? How do these vary? (3) What salient program elements in WINS are highlighted in alumnae narratives as relevant to Black women’s experiences in adulthood? How do these associations vary? (4) How do selected outcomes (stated in RQ2) and life story narratives among non-enrolled applicants compare to program alumnae? and (5) How do salient components in the WINS program associate with socio-cultural factors in regard to Black women’s careers and other life goals? Participants include 100 Black WINS alumnae as an intervention group and a matched comparison group of 100 Black women who successfully applied to the WINS program but did not or could not enroll. Measurable life outcomes and life trajectory narratives with maps of experiences from both groups will be studied via a convergent mixed methods design inclusive of quantitative and qualitative analyses. Comparisons of outcomes and trajectories will be made between the study groups. Further, associations between alumnae’s long-term outcomes and how they correlate their WINS experiences with other socio-cultural factors in their lives will be identified. It is anticipated that findings will challenge extant knowledge and pinpoint the most effective characteristics of and appropriate measures for studying lasting impacts of OST STEMM programs for Black women and girls. The project is positioned to contribute substantially to national efforts to increase participation of Black women in STEMM.
DATE: -
TEAM MEMBERS: Ayana Allen-Handy Jacqueline Genovesi Loni Tabb
resource project Public Programs
Science identity has been shown to be a necessary precondition to academic success and persistence in science trajectories. Further, science identities are formed, in large part, due to the kinds of access, real or perceived, that (racialized) learners have to science spaces. For Black and Latinx youth, in particular, mainstream ideas of science as a discipline and as a culture in the US recognize and support certain learners and marginalize others. Without developing identities as learners who can do science, or can become future scientists, these young people are not likely to pursue careers in any scientific field. There are demonstrable links between positive science identities and the material and social resources provided by particular places. Thus, whether young people can see themselves as scientists, or even feel that they have access to science practices, also depends on where they are learning it. The overarching goal of this project is to broaden participation of Black and Latinx youth in science by deepening our understanding of both science identities and how science learning spaces may be better designed to support the development of positive science identities of these learners. By deepening the field’s knowledge of how science learning spaces shape science identities, science educators can design more equitable learning spaces that leverage the spatial aspects of program location, culturally relevant curriculum, and participants’ lived experiences. A more expansive understanding of positive science identities allows educators to recognize these in Black and Latinx learners, and direct their continued science engagements accordingly, as positive identities lead to greater persistence in science. This project is a collaboration between researchers at New York University and those at a New York City informal science organization, BioBus. It is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This participatory design research project will compare three different formats, in different settings, of afterschool science programming for middle schoolers: one located in a lab space on the campus of a nearby university, one located in the public middle school building of participating students, and one aboard a mobile science lab. For purposes of this study, the construct of “setting” refers to the dimensions of geographic location, built physical environment, and material resources. Setting is not static, but instead social and relational: it is dynamically (co)constructed and experienced in activity by individuals and in interaction by groups of individuals. Therefore, the three BioBus programming types allow for productive comparison not only because of their different geographic locations, built environments, and material resources (e.g., scientific tools), but also the existing relationships learners may have with these places, as well as the instructional designs and pedagogical practices that BioBus teaching scientists use in each. This project uses a design-based research approach to answer the following research questions: (1) How do the settings of science learning shape science identity development? What are different positive science identities that may emerge from these relationships? And (2) What are ways to leverage different spatial aspects of informal science programming and instruction to support positive science identities? The study uses ethnographic and micro-analytic methods to develop better understandings of the relationships between setting and science identity development, uncover a broad range of types of positive science identities taken up by our Black and Latinx students, and inform informal science education to design for and leverage spatial aspects of programming and instruction. Findings will contribute to a systematic knowledge base bringing together spatial aspects of informal science education and science identity and identity development, and provide new tools for informal science educators, including design principles for incorporating spatial factors into program and lesson planning.
DATE: -
TEAM MEMBERS: Jasmine Ma Latasha Wright Roya Heydari
resource project Media and Technology
Increasing the diversity of the Science, Technology, Engineering, and Mathematics (STEM) workforce hinges on understanding the impact of the many related, pre-college experiences of the nation’s youth. While formal preparation, such as high school course-taking, has a major influence, research has shown that out-of-school-time activities have a much larger role in shaping the attitudes, identity, and career interests of students, particularly those who are members of groups historically underrepresented in STEM fields (Black, Indigenous, Latinx, and/or Pacific Islander). A wide range of both innovative adult-led (science clubs, internships, museum-going, competitions, summer camps) and personal-choice (hobbies, family talk, games, simulations, social media, online courses) options exist. This project studies the variety and availability such experiences to pre-college students. The project is particularly interested in how community cultural capital is leveraged through informal activities and experiences, drawing upon the “funds of knowledge” that culturally diverse students bring to their STEM experiences (e.g., high aspirations, multilingual facility, building of sustaining social networks, and the capacity to challenge negative stereotyping). This study has the capability to begin to reveal evidence-based measures of the absolute and relative effectiveness of promising informal educational practices, including many developed and disseminated by NSF-funded programs. Understanding the ecology of precollege influencers and the hypotheses on which they are based, along with providing initial measures of the efficacy of multiple pathways attempting to broaden participation of students from underrepresented groups in STEM majors and careers, will aid decision-making that will maximize the strategic impact of federal and local efforts.

The project first collects hypotheses from the wide variety of stakeholders (educators, researchers, and students) about the kinds of experiences that make a difference in increasing students’ STEM identity and career interest. Identifying the descriptive attributes that characterize opportunities across individual programs and validating a multi-part instrument to ascertain student experiences will be carried out through a review of relevant literature, surveying stakeholders using crowdsourced platforms, and through in-depth interviews with 50 providers. A sample of 1,000 students from 2- and 4-year college and universities, drawn from minority-serving institutions, such as Historically Black Colleges, Hispanic Serving Institutions, and Tribal Colleges and Universities will serve to establish the validity and reliability of the derived instrument and provide estimates of the availability and frequency of involvement. Psychometric methods and factor analysis will guide us in combining related variables into indices that reflect underlying constructs. Propensity score weighting will be employed for estimating effects when exposure to certain OST activities is confounded with other factors (e.g., parental education, SES). Path models and structural equation models (SEM) will be employed to build models that use causal or time related variables, for instance, students’ career interests at different times in their pre-college experience. The study goes beyond evaluation of individual experiences in addressing important questions that will help policy makers, educators, parents, and students understand which OST opportunities serve the diverse values and goals of members of underrepresented groups, boosting their likelihood of pursuing STEM careers. This project is co-funded by the Advancing Informal STEM Learning (AISL) and EHR CORE Research (ECR) programs.
DATE: -
TEAM MEMBERS: Philip Sadler Remy Dou Monique Ross Susan Sunbury Gerhard Sonnert
resource project Informal/Formal Connections
This Innovations in Development project explores radical healing as an approach to create after-school STEM programming that welcomes, values and supports African American youth to form positive STEM identities. Radical healing is a strength-based, asset centered approach that incorporates culture, identity, civic action, and collective healing to build the capacity of young people to apply academic knowledge for the good of their communities. The project uses a newly developed graphic novel as a model of what it looks like to engage in the radical healing process and use STEM technology for social justice. This graphic novel, When Spiderwebs Unite, tells the true story of an African American community who used STEM technology to advocate for clean air and water for their community. Youth are supported to consider their own experiences and emotions in their sociopolitical contexts, realize they are not alone, and collaborate with their community members to take critical action towards social change through STEM. The STEM Club activities include mentoring by African American undergraduate students, story writing, conducting justice-oriented environmental sciences investigations, and applying the results of their investigations to propose and implement community action plans. These activities aim to build youth’s capacity to resist oppression and leverage the power of STEM technology for their benefit and that of their communities.

Clemson University, in partnership with the Urban League of the Upstate, engages 100 predominantly African American middle school students and 32 African American undergraduate students in healing justice work, across two youth-serving, community-based organizations at three sites. These young people assume a leadership role in developing this project’s graphic novel and curriculum for a yearlong, after-school STEM Club, both constructed upon the essential components of radical healing. This project uses a qual→quant parallel research design to investigate how the development and use of a graphic novel could be used as a healing justice tool, and how various components of radical healing (critical consciousness, cultural authenticity, self knowledge, radical hope, emotional and social support, and strength and resilience) affect African American youths’ STEM identity development. Researchers scrutinize interviews, field observations, and project documents to address their investigation and utilize statistical analyses of survey data to inform and triangulate the qualitative data findings. Thus, qualitative and quantitative data are used to challenge dominant narratives regarding African American youth’s STEM achievements and trajectories. The project advances discovery and understanding of radical healing as an approach to explicitly value African Americans’ cultures, identities, histories, and voices within informal STEM programming.
DATE: -
TEAM MEMBERS: Renee Lyons Rhondda Thomas Corliss Outley
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Public Programs
Informal STEM education spaces like museums can intentionally serve surrounding communities and support sustainable and accessible engagement. Building from this base, the project takes a stance that the intersection of the museum, home/family life and the youth’s internal practices and disciplinary sense of self are rooted in history and culture. Thus, this CAREER work builds on the following principles: Black families and youth have rightful presence in STEM and in STEM learning environments; Black families are valuable learning partners; and Black youths need counterspaces to explore STEM as one mechanism for creating future disciplinary agency. In partnership with the Henry Ford Museum and the Detroit-Area Pre-College Engineering Program, the project seeks to (a) expand the field's understanding of how Black youth engineer and innovate; (b) investigate the influence of a culturally relevant curriculum on their engineering practices and identity, knowledge, and confidence; and (c) describe the ways Black families and museums support youth in engineering learning experiences. The work will center on the 20-hour “Innovate” curriculum which was designed by the museum to bridge design, innovation, and creation practices with the artifacts of innovators throughout time. The project comprises six weekend “Innovate” sessions and an at-home innovation experience plus participation in an annual Invention Convention. By focusing on these aims, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

The main research questions of this multiphase CAREER award are: (1) What practices do Black youths and families engage in as they address engineering, design, and innovation challenges? (2) In what ways does a culturally relevant museum-based innovation program influence the design and innovation practices and assessment performance of Black youths and families as they engage in engineering, design, and innovation across learning settings? (3) How does teaching innovation, design, and engineering through historical re-telling and reconstruction influence a youth’s perception of their own identities, abilities, and practices? and (4) How do Black families engage with informal STEM learning settings and what resources best support their engineering, design, and innovation exploration? Youth in sixth grade are the focus of the research. The work is guided by ecological systems, sociocultural learning, culturally relevant pedagogy, and community cultural wealth theories. During phase one, the focus will be to refine the curriculum and logistics of the study implementation. The investigator will enhance the curriculum to include narratives of Black innovators and engineers. Fifteen families will be recruited to participate in the program enhancement pilot and initial research cycle for phase two. In phase three another cohort of families will be recruited to participate. Survey research, narrative inquiry and digital ethnography will comprise the approaches to explore the research questions. The evaluation has a two-pronged focus: to assess (1) how well the enhanced Innovate curriculum and museum/home learning experience supports Black families’ participation and (2) how well the separate phases of the study connect and operate together to meet the research aims. The study’s findings can help families and informal practitioners leverage evidence-based approaches to support Black youth in making connections between history and out-of-school contexts to model and develop their innovative engineering practices. Additionally, this work has implications for Black undergraduate students who will develop skills through their mentorship and researcher roles, studying cultural practices and learning experiences. The research study and findings can inform the design of future museum/home learning programs and research opportunities for Black learners in informal learning spaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: DeLean Tolbert Smith
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham