Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource research Media and Technology
Having a central scientific language remains crucial for advancing and globally sharing science. Nevertheless, maintaining one dominant language also creates barriers to accessing scientific careers and knowledge. From an interdisciplinary perspective, we describe how, when, and why to make scientific literature more readily available in multiple languages through the practice of translation. We broadly review the advantages and limitations of neural machine translation systems and propose that translation can serve as both a short- and a long-term solution for making science more resilient
DATE:
TEAM MEMBERS: Emma Steigerwald Valeria Ramírez-Castañeda Débora Y C Brandt András Báldi Julie Teresa Shapiro Lynne Bowker Rebecca D Tarvin
resource research Media and Technology
Modern science communication has emerged as a field of study, a body of practice and a profession. In the last 60 years, we have seen the birth of interactive science centres, university courses, the first research into science communication, and a growth in employment by research institutions, universities, museums, science centres and industry. Now Ireland has told its story.
DATE:
TEAM MEMBERS: Toss Gascoigne
resource research Media and Technology
This commentary introduces a preliminary conceptual framework for approaching putative effects of scholarly online systems on collaboration inside and outside of academia. The first part outlines a typology of scholarly online systems (SOS), i.e., the triad of specialised portals, specialised information services and scholarly online networks which is developed on the basis of nine German examples. In its second part, the commentary argues that we know little about collaborative scholarly community building by means of SOS. The commentary closes with some remarks on further research questions
DATE:
TEAM MEMBERS: Dirk Hommrich
resource project Media and Technology
Underrepresented minorities (URMs) are less than 10% of engineering faculty, despite comprising nearly a third of the nation's population. A common explanation for their disproportionate representation, at the engineering faculty level, is related to a lack of access to effective mentorship from other faculty. This NSF INCLUDES Design and Development Launch Pilot project will expand a new mentoring and advocacy-networking paradigm to bring together two stakeholder groups: (1) underrepresented minorities (URMs) who are engineering faculty and (2) well-regarded (primarily non-URM) emeriti/retired engineering faculty. A previously-funded NSF project found that this mentor-mentee pairing was viewed favorable by both parties and beneficial, particularly by the URM engineering faculty. Because of these results, the investigators proposed to scale, test, and evaluate the approach on a broader scale by creating national infrastructural network partners to help increase capacity to serve a greater number of URM engineering faculty and to introduce tele-mentoring and training models to serve URM faculty who work in remote geographical locations with very little access to mentors.

The project will use a multi-phased phenomenological, mixed method research design to gain greater understanding of the ways in which the URM faculty and emeriti faculty experience the opportunities afforded by the project. Further, the investigators plan to collect data to examine how project participants perceive and experience conventional, direct communications (e.g., telephone calls, e-mail, and in-person meetings)through the mentoring process versus the use of Embodied Conversational Agents (ECAs), anthropomorphic interface agents that engage a user in real-time dialogue by using verbal-nonverbal channels to emulate the in-person experience. This project has the potential to broaden participation in the engineering professoriate and opens up new possibilities for supporting URM engineering faculty.
DATE: -
TEAM MEMBERS: Comas Haynes Valerie Conley Sylvia Mendez Kinnis Gosha Rosario Gerhardt
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will develop and test intergenerational science media resources for parents that are participating in adult education programs and their young children. The materials will build on the research-based and successful children's television program, Fetch with Ruff Ruffman. The target audience includes parents enrolled in adult education programs who lack a high school diploma or are in English as a Second Language classes. These resources will support parents' engagement in science activities with their children both in the adult education settings as well as at home. Adult and family educators will receive professional development resources and training to support their integration of the parent/child activities. Project partners include the National Center for Families Learning, Kentucky Educational Television, and Alabama Public Television,

The goals of the Ruff Family Science project are to: (1) investigate adult education settings that feature an intergenerational learning model, in order to learn about the unique characteristics of adults and families who are enrolled in these programs; (2) examine the institutional circumstances and educator practices that support joint parent/child engagement in science; (3) iteratively develop new prototype resources meet the priorities and needs of families and educators involved in intergenerational education settings; and (4) develop the knowledge needed to create a fuller set of materials in the future that will motivate and support diverse, low-income parents to investigate science with their children. The research strategy is comprised of three main components: Phase 1: Needs Assessment: Determine key motivations and behaviors common to adult education students who are also parents; surface obstacles and assets inherent in these parents' current practices; and examine the needs and available resources for supplementing parents' current engagement in family science learning. Phase 2: Prototype Development: Iteratively develop two prototype Activity Sets, along with related educator supports and training materials, designed to promote joint parent-child engagement with English and Spanish-speaking families around physical science concepts. Phase 3: Prototype Field Test: Test how the two refined prototype Activity Sets work in different educational settings (adult education, parent education, and parent and child together time). Explore factors that support or impede effective implementation. Sources of data for the study include observations of adult and parent education classes using an expert interview protocol, focus groups, adult and family educator interviews, and parent surveys.
DATE: -
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource project Media and Technology
Mathematics is the foundation of many STEM fields and success in mathematics is a catalyst for success in other scientific disciplines. Increasing the participation of women and other under-represented groups in the mathematics profession builds human capital that produces a diverse pool of problem solvers in business and industry, research mathematicians, faculty at all levels, and role models for the next generation. Existing support and enrichment programs have targeted women in mathematics at different stages in their undergraduate and graduate education, with different strategies to building community, creating a sense of belonging, and promoting a growth mind set. These strategies challenge some of the most common obstacles to success, including isolation, stereotype threat, not committing to mathematics early enough, and imposter syndrome. Acknowledging the diversity among women in terms of socio-economic background and educational background, this project proposes to examine the effectiveness of these programs through the lens of two primary questions: (1) Which elements of these programs are most critical in the success of women, as a function of their position along these distinct diversity axes?, and (2) which features of these programs are most effective as a function of the stage of the participant's career? These questions are guided by the rationale that a better understanding of, and improved pathways by, which programs recruit and retain undergraduate and graduate women in mathematics has the strong potential to increase the representation of women among mathematics PhDs nationwide.

This project seeks to increase and diversify the number of professional mathematicians in the United States by identifying and proliferating best practices and known mechanisms for increasing the success of women in mathematics graduate programs, particularly women from under-represented groups. The PIs on this proposal, all of whom are leaders of initiatives that have been active for nearly two decades, will work with experts in management, data collection and reporting, and communications to address the following three challenges: (1) develop a common system of measuring the effectiveness of each element in these initiatives; (2) develop a process for effective, collective decision making; and (3) create connections between existing activities and resources. This project is both exploratory research and effectiveness research. The project team first will explore the contextual factors that serve to support or inhibit female pursuit of mathematics doctorates by interviewing a variety of women who were undergraduate mathematics majors in the past, as well as current professional mathematicians. They then will use this information to better understand the most effective features of various current and past initiatives that are trying to increase the participation of women in advanced mathematics. A key stakeholder meeting will develop a process for effective, collective decision-making, to utilize what the project team learns from the interviews. The leadership team will develop a website with discussion board and social media components to highlight best practices and facilitate a virtual community for women interested in mathematics. Finally, a distillation of program elements and their targeted effectiveness will inform the selection of interconnected activities to test on a scalable model. These prototypes will be implemented at several sites chosen to represent a diversity of constituencies and local support infrastructure.
DATE: -
TEAM MEMBERS: Judy Walker Ami Radunskaya Ruth Haas Deanna Haunsperger
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The United States is facing a crisis: not enough students are being trained in the areas of science, technology, engineering and mathematics (STEM) to support and foster economic growth. In response, the State University of New York (SUNY) and the New York Academy of Sciences (The Academy) are collaborating to train SUNY graduate students and post-doctoral fellows to deliver mentoring and STEM content to underserved middle-school children in afterschool programs
DATE:
TEAM MEMBERS: Johanna Duncan-Poitier Jill Lansing Phillip Ortiz Meghan Groome Kristian Breton Stephanie Wortel Mark Stewart Kristine Paulsson Robert Geer Nakesha Smith Deborah Tyksinski Elizabeth Rossi Charles Spuches Brandon Murphy Lorrie Clemo Karen Valentino Angela Kelly Joe Cimigliaro Gwendolyn Elphick Gaylen Moore
resource research Media and Technology
Science must be open and accessible, and diffusion of knowledge should not be limited by patents and copyrights. After the Open Science Summit held in Berkeley, some notes about sharing scientific data and updating the social contract for science. Against the determinist view on technological and legal solutions, we need an explicit reflection on the relation between science and society. Both academic and industrial science seem unable to fulfill open science needs: new societal configurations are emerging and we should keep asking questions about appropriation, power, privatisation and
DATE:
TEAM MEMBERS: Alessandro Delfanti
resource research Media and Technology
The ever-changing nature of academic science communication discourse can make it challenging for those not intimately associated with the field ― scientists and science-communication practitioners or new-comers to the field such as graduate students ― to keep up with the research. This collection of articles provides a comprehensive overview of the subject and serves as a thorough reference book for students and practitioners of science communication.
DATE:
TEAM MEMBERS: Achintya Rao