Skip to main content

Community Repository Search Results

resource project Exhibitions
The Science Museum of Minnesota (SMM) will collaborate with four community organizations serving Black, Indigenous, and People of Color (BIPOC) audiences to research and develop a novel outdoor makerspace that engages families in STEM learning. A makerspace is a place where people work together on creative, interest driven projects. In working with BIPOC families, the project addresses three forms of historical (and present day) exclusion of community participants, including participation in the design of informal learning experiences, participation in such activities, and overall engagement in STEM. The project aims to develop activities that foster STEM learning using natural materials in an outdoor makerspace, informed through robust collaboration with local communities. This project will result in an outdoor makerspace at SMM that will include 3-4 settings (approximately 2500 square feet total) that house and support multiple making activities in an outdoor context. The proposed work will contribute to advancing knowledge through exploring how BIPOC families define learning in makerspaces and how younger children can be fully engaged in family learning. The project will share the inclusive design and community collaboration practices developed through this work with other museums, maker educators, and other community organizations that can develop or expand their own outdoor makerspaces in ways that will respect and reflect BIPOC families’ perspectives.

BIPOC families will join museum staff as contributors in the development and iteration of an outdoor makerspace and collaborators in the development of generalized design principles and dissemination of the research. Visitor-captured video of engagement in the outdoor makerspace, surveys, and memos from design meetings with community partners serve as the foundation for the process of aligning design and development of outdoor informal science education spaces with community needs and values. All research activities will be guided by a culturally responsive research framework and use strategies to ensure the multicultural validity such as video meaning-making with family research participants and member-checking instruments, data analyses, and findings with Design Partners. Project research will address three questions: (1) What are the characteristics of family learning in an outdoor nature-situated makerspace, including how BIPOC families identify and describe STEM learning and how outdoor spaces can be built to support BIPOC families’ perspectives? (2) How can the space be built to support multi-age families to engaged in making, including a focus on what design elements support preschool learner’s engagement and sustained participation by other family members? and (3) How do the design principles for making with widely available materials translate from indoor to outdoor spaces and materials? Research findings, design principles and community engagement guides will be widely disseminated to researchers, designers, program developers, informal science institutions and community organizations.
DATE: -
resource research Public Programs
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. Digital storytelling, in which narratives and reflections are combined with photos and videos in order to be shared with an audience, has become a familiar, enjoyable activity for many children (Robin, 2008). We examine whether digital storytelling activities during tinkering and reflection will be related to
DATE:
TEAM MEMBERS: Lauren Pagano Riley George Afnan Amdeen Catherine Haden
resource research Public Programs
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. We examine whether digital storytelling activities during tinkering and reflection will be related to more engineering talk.We also explore whether children with previous digital storytelling experience will produce higher quality narratives than children without.
DATE:
TEAM MEMBERS: Riley George Afnan Amdeen Lauren Pagano Catherine Haden
resource project Exhibitions
Recent studies have advocated for a shift toward educational practices that involve learners in actively contributing to science, technology, engineering, and mathematics (STEM) as a shared and public endeavor, rather than limiting their involvement to the construction of previously established knowledge. Prioritizing learners’ agency in deciding what is worth knowing and how learning takes place may create more equitable and inclusive learning experiences by centering the knowledge, cultural practices, and social interactions that motivate learning for people across ages, genders, and backgrounds. In informal learning environments, families’ social interactions are critical avenues for STEM learning, and science centers and museums have developed strategies for prompting families’ sustained engagement and conversation at STEM exhibits. However, exhibits often guide visitors’ exploration toward predetermined insights, constraining the ways that families can interact with STEM content, and neglecting opportunities to tap into their prior knowledge. Practices in the maker movement that emphasize skill-building and creative expression, and participatory practices in museums that invite visitors to contribute to exhibits in consequential ways both have the potential to reframe STEM learning as an ongoing, social process that welcomes diverse perspectives. Yet little is known about how these practices can be scaled, and how families themselves respond to these efforts, particularly for the diverse family audiences that science centers and museums aim to serve. Further, although gender and ethnicity both affect learning in informal settings, studies often separate participants along a single dimension, obscuring important nuances in families’ experiences. By addressing these outstanding questions, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

Research will address (1) how families perceive and act on their collective epistemic agency while exploring STEM exhibits (i.e., how they work together to negotiate and pursue their own learning goals); (2) whether and how families’ expressions of agency are influenced by gender and ethnicity; and (3) what exhibit design features support expressions of agency for the broadest possible audience. Research studies will use interviews and observational case studies at a range of exhibits with distinct affordances to examine families’ epistemic agency as a shared, social practice. Cultural historical activity theory and intersectional approaches will guide qualitative analyses of families’ activities as systems that are mediated by the physical environment and social setting. Education activities will involve an ongoing collaboration between researchers, exhibit designers, educators, and facilitators (high-school and college-level floor staff), using a Change Laboratory model. The group will use emerging findings from the research to create a reflection tool to guide the development of more inclusive learning experiences at STEM exhibits, and a set of design principles for supporting families’ expressions of agency. A longitudinal ethnographic study will document the development of inclusive exhibit design practices throughout the project as well as how the Change Lab participants develop their sociocultural perspectives on learning and exhibit design over time. Analyzing these shifts in practice within the Change Lab will provide a deeper understanding of what works and what is difficult or does not occur when working toward infrastructure change in museums. By considering how multiple aspects of families’ identities shape their learning experiences, this work will generate evidence-based recommendations to help science centers and museums develop more inclusive practices that foster a sense of ownership over the learning process for the broadest possible audience of families.
DATE: -
TEAM MEMBERS: Susan Letourneau
resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Exhibitions
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.

This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.

This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Tsivia Cohen Kim Koin Natalie Bortoli Catherine Haden David Uttal Maria Marcus
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -