Skip to main content

Community Repository Search Results

resource research Media and Technology
While previous studies have found games and gaming to be a new and innovative communication strategy to inform the public and citizens about scientific research and engage them with it, this article addresses the under-researched question of credibility aspects in research-based gaming. The study analyses agricultural stakeholders' discussions on the credibility of scientific descriptions in The Maladaptation Game — a game based on research on climate change maladaptation in Nordic agriculture. The analysis of focus group transcripts and frame credibility finds that players attribute
DATE:
TEAM MEMBERS: Therese Asplund
resource research Media and Technology
This NOVA multiplatform media initiative consisted of a 2-hour nationally broadcast PBS documentary, Polar Extremes; a 10-part original digital series, Antarctic Extremes; an interactive game, Polar Lab; accompanying polar-themed digital shorts, radio stories, text reporting, and social media content; a collection of educational resources on PBS LearningMedia; and community screening events and virtual field trips for science classrooms. Across multiple media platforms the project’s video content had nearly 13 million views. The research explored the potential for informal STEM learning
DATE:
TEAM MEMBERS: Lisa Leombruni Heather Hodges
resource research Media and Technology
In recent years, there has been considerable interest in studying and using scientific consensus messaging strategies to influence public opinion. Researchers disagree, sometimes vociferously, about how to examine the potential influence of consensus messaging, debating one another publicly and privately. In this essay, we take a step back and focus on some of the important questions that scholars might consider when researching scientific consensus messaging. Hopefully, reflecting on these questions will help researchers better understand the reasons for the different points of debate and
DATE:
TEAM MEMBERS: Asheley Landrum Matthew Slater
resource project Media and Technology
Polar Literacy: A model for youth engagement and learning will foster public engagement with polar science. The project targets middle-school aged underserved youth and polar research scientists, with the goal to increase youth interest in and understanding of Polar Regions, and to hone researchers' science communication skills. The project will develop affordable and replicable ways of bringing polar education to informal learning environments, extend our understanding of how polar education initiatives can be delivered to youth with maximum effect, and design a professional development model to improve the capacity for Polar Region researchers to craft meaningful broader impact activities. Polar Literacy will create and test a model which combines direct participation by scientists in after-school settings, with the use of curated polar research data sets and data visualization tools to create participatory learning experiences for youth. Beyond the life of the project funding, many of the project deliverables (including kits, videos, and other resources) will continue to be used and disseminated online and in person through ongoing work of project collaborators.

Polar Literacy: A model for youth engagement and learning will advance the understanding of informal learning environments while leveraging the rich interdisciplinary resources from polar investments made by the National Science Foundation (NSF). The project's key audiences -- polar researchers, informal educators, and out-of-school time (OST) youth in grades 4-7 (ages 9-13) -- will connect through both place-based and internet-based experiences and work collaboratively to generate a flexible, scalable, and transferable education model. The project will 1) design OST kits and resource guides (focused on Polar Literacy Principles) and include "Concept in a Minute" videos designed to highlight enduring ideas, 2) provide professional development for informal educators, 3) synthesize a club model through adaptation of successful facets of existing informal learning programs, and 4) create Data Jam events for the OST Special Interest (SPIN) clubs and camp programs by modifying an existing formal education model. A research design, implemented at four nodes over three years, will answer three research questions to evaluate the impact of professional development on informal educators, as well as the impact of programs on youth, and the effectiveness of the model. In addition to the project team and collaborators who are informal education practitioners, an advisory board composed of experts in youth programming, informal education, and evaluation will guide the project to ensure that it advances the body of informal STEM learning research.

Polar Literacy is an Advancing Informal STEM Learning (AISL) Innovations in Development project in response to the Dear Colleague Letter: Support for Engaging Students and the Public in Polar Research (NSF 18-103). Polar Literacy is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. This project has co-funding support from the Antarctic section of the Office of Polar Programs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Janice McDonnell Oscar Schofield Charles Lichtenwalner Jason Cervenec
resource project Media and Technology
Increasingly, scientists and their institutions are engaging with lay audiences via media. The emergence of social media has allowed scientists to engage with publics in novel ways. Social networking sites have fundamentally changed the modern media environment and, subsequently, media consumption habits. When asked where they primarily go to learn more about scientific issues, more than half of Americans point to the Internet. These online spaces offer many opportunities for scientists to play active roles in communicating and engaging directly with various publics. Additionally, the proposed research activities were inspired by a recent report by the National Academies of Sciences, Engineering, and Medicine that included a challenge to science communication researchers to determine better approaches for communicating science through social media platforms. Humor has been recommended as a method that scientists could use in communicating with publics; however, there is little empirical evidence that its use is effective. The researchers will explore the effectiveness of using humor for communicating about artificial intelligence, climate science and microbiomes.

The research questions are: How do lay audiences respond to messages about scientific issues on social media that use humor? What are scientists' views toward using humor in constructing social media messages? Can collaborations between science communication scholars and practitioners facilitate more effective practices? The research is grounded in the theory of planned behavior and framing as a theory of media effects. A public survey will collect and analyze data on Twitter messages with and without humor, the number of likes and re-tweets of each message, and their scientific content. Survey participants will be randomly assigned to one of twenty-four experimental conditions. The survey sample, matching recent U.S. Census Bureau data, will be obtained from opt-in panels provided by Qualtrics, an online market research company. The second component of the research will quantify the attitudes of scientists toward using humor to communicate with publics on social media. Data will be collected from a random sample of scientists and graduate students at R1 universities nationwide. Data will be analyzed using descriptive statistics and regression modeling.

The broader impacts of this project are twofold: findings from the research will be shared with science communication scholars and trainers advancing knowledge and practice; and an infographic (visual representation of findings) will be distributed to practitioners who participate in research-practice partnerships. It will provide a set of easily-referenced, evidence-based guidelines about the types of humor to which audiences respond positively on social media.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sara Yeo Leona Yi-Fan Su Michael Cacciatore
resource project Media and Technology
Explore the Science of Spring: A Live Media Event is an Innovations in Development project produced by the signature PBS series Nature. The new primetime series Spring LIVE (working title) will break the frame of a traditional documentary, letting viewers themselves explore the dramatic seasonal changes of spring through the immediacy of live television. On-camera hosts, scientists and naturalists in locations across the U.S., and scores of citizen scientists will use observation and scientific inquiry to explore the workings of nature during this season of rebirth. The unfolding stories of seasonal change will illuminate larger scientific insights--into the biodiversity of species in habitats, the interconnectedness of plants and animals in diverse ecosystems, the global phenomenon of species migration, and how spring "green-up" can be affected by environmental change--while inspiring appreciation for species conservation and habitat preservation. Spring LIVE is conceived as an ongoing series, with this inaugural season composed of three one-hour programs broadcast live on three consecutive nights, along with real-time interactions via Facebook. Reaching long-standing Nature viewers (2.5 million per episode), Spring LIVE will seek to turn mature adults and diverse families into citizen science doers, and leverage younger Nature online audiences through social media and community engagement in partnership with citizen science projects.

Spring LIVE will build public knowledge of and engagement in phenology and citizen science. The project will also conduct knowledge-building research on the effectiveness of Facebook as a science learning tool. It will experiment with eliciting audience participation via Facebook within the live shows to generate synchronous, second-screen thought and discussion. An exploratory study by Multimedia Research will look at the impact of this feature, addressing the question: To what extent and how does Facebook interactivity within live science shows impact adult engagement, learning and motivation? Spring LIVE will also engage multiple partners to expand reach and impact and build capacity in their fields. National partners include the National Park Service and Next Avenue; citizen science partners include Celebrate Urban Birds, National Phenology Network, Monarch Blitz, and SciStarter, among others. PBS stations will work with these organizations to involve diverse, intergenerational audiences in observation of nature and seasonal change. Project evaluation, implemented by Knight Williams Research Communications, will focus on the impact of live television on science learning, and the success of the integration of citizen science projects on air, online, and in communities. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Fred Kaufman
resource project Media and Technology
Over the seven years prior to this award, the principal investigator from George Mason University and a national team of scientists, professional societies, science communication researchers, and broadcast meteorologists have been engaged in an effort to include in TV and other weather broadcasts information about current research on the interactions of climate and weather. A Climate Matters network has been established that involves 350 weathercasters at 218 stations, in 119 media markets, nationwide. A particular focus of the initiative has been to help the public become more familiar with the science behind how their local weather and its trends are related to the dynamics of the climate. Many communities nationwide are engaged in deliberations about how to understand, plan for, and adapt to the potential impacts of changes in their weather on important factors pertaining to their economy and well-being, such as natural resources, natural disasters, agriculture, industry, and health. The goal of this continuing project is to expand the quantity and nature of the coverage of such information into the news segments of local news media. By stimulating local reporting on climate impacts and their relationships to personal and community-wide decision-making, this project will potentially help millions of Americans better understand and respond to critical factors that are affecting their lives. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project involves five inter-related, complementary activities: (1) Knowledge building through formative research and process evaluation, specifically in-depth interviews and random sample surveys of journalists in each of the participating journalism professional societies; (2) Recruiting 400 news directors, producers, reporters and additional weathercasters into the Climate Matters network; (3) Providing climate reporting training and professional development to members of the network; (4) Producing and distributing Climate Matters reporting packages to all members of the network on a near-weekly basis; and (5) Evaluating the impacts of the climate reporting on public understanding of science.
DATE: -
TEAM MEMBERS: Edward Maibach Susan Hassol Bernadette Placky Richard Craig Teresa Myers
resource project Media and Technology
Polar Extremes: Enhancing Experiential Digital Learning is an integrated media and research project produced by the PBS science series, NOVA, that will bring polar science to informal learners through traditional storytelling and experiential, digital learning environments. Stark, cold, and seemingly frozen in time, the top and bottom of the Earth feel other-worldly, completely removed from our everyday existence. Yet, nothing could be further from the truth. The Arctic and Antarctic exert profound influence over our entire planet. Disturbances in these icy realms can send transformative ripples around the globe, altering the circulation of the atmosphere and oceans, and affecting every form of life. And although the poles might seem constant and everlasting, they--like our planet--are always changing, with a deep and complex past. NOVA will provide informal science learners access to specialized research happening at the ends of the earth, introducing them to today's scientists exploring the major drivers of the climate, uncovering the deep history of past paleoclimates, or perfecting climate and weather models. The project includes: a 2-hour nationally broadcast PBS documentary (working title Polar Extremes); a NOVA Polar Lab, an experiential interactive learning platform on polar science; and a Polar Exploration Initiative consisting of a 10-part YouTube series, a collection of 360 videos, virtual field trips, and social media reporting "on location" from Antarctica, along with other polar-themed video, radio and digital journalism. It also includes a research program conducted in collaboration with the University of California, Santa Barbara (UCSB) to study how narrative-driven and experiential learning can foster informal learning in polar science across a diverse array of audiences. NOVA, the most popular science program on television, with a robust digital presence, will bring current polar science to millions. NOVA will use a range of media to transport viewers to remote polar locations, to interact with polar scientists, manipulate polar data, or vicariously explore the frozen tundra--using a mix of learning approaches. This project will develop and test the impact of two forms of informal learning: traditional narrative-driven storytelling and active, experiential learning. Both components will be developed through audience research, formative evaluation or pilot testing, and experiments. The overarching goal is to determine the best way to combine and leverage traditional and interactive media technologies to educate the public about polar science. How can these modes enhance learning outcomes? The study uses the Informal Science Learning "strand framework" developed by the National Research Council in Learning Science in Informal Environments: People, Places, and Pursuits (2009). Because different age groups and socioeconomic backgrounds may engage differently with different types of learning materials and platforms, the project components are designed to test a variety of different learning approaches, with different audiences. This study will be one of the first to address the relative efficacy of various forms of experiential education and whether active versus vicarious experiential learning depends on the characteristics of the learners. As engagement technologies continue to evolve, this project will help inform how to best design and apply them effectively. The project will apply these new lessons specifically to present polar research to the public and to offer audiences an opportunity to explore and learn about these remote regions in new ways that bring them to life, make them relevant, and enhance learning outcomes. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs (OPP).
DATE: -
TEAM MEMBERS: Paula Apsell Lisa Leombruni Julia Cort Hunter Gehlbach
resource project Media and Technology
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.

In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE: -
TEAM MEMBERS: David Shaffer Kristen Scopinich Holly Gibbs Jeffrey Linderoth
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans