Skip to main content

Community Repository Search Results

resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource evaluation Public Programs
The MyBEST (Mentoring Youth Building Employable Skills in Technology) project, funded by a grant from the National Science Foundation's Informal Science Education program, concluded its three years of operation in 2006. This youth-based program was intended to provide participants with in-depth learning experiences involving information and design technologies. These experiences had a dual focus: enabling youth participants to gain fluency in using these technologies while showing them how adults apply them in work and academic endeavors. Appendix includes survey.
DATE:
TEAM MEMBERS: Elizabeth Xue
resource evaluation Professional Development, Conferences, and Networks
This professional development event was held on November 6 and 7, 2005 at the Museum of Science, Boston, under the direction of the Museum’s Director for Strategic Projects, Carol Lynn Alpert. This event was sponsored by the Center for High-rate Nanomanufacturing NSF Nanoscale Science and Engineering Center (NSEC) headquartered at Northeastern University, the University of Massachusetts – Lowell, and by the “Science of Nanoscale Systems and their Device Applications” NSF NSEC headquartered at Harvard University. The Symposium was intended to provide educators from middle schools, high schools
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert Barbara Flagg Elissa Chin Christine Reich
resource project Professional Development, Conferences, and Networks
This pilot project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics (STEM) teacher in-service model for 30 grade 4-6 teachers from schools from two nations in Utah. The in-service program relies on community advisory panels, current standards and best practices in science, mathematics and technology education, by implementing engineering and technology education activities as a means of teaching science and mathematics. The goal is to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials with the help of community advisory panels and providing each teacher participant with at least 100 hours of structured professional development. The long-range goal is to develop an in-service model that can be transported to other Native American nations and schools. STEM and education faculty, community teachers, parents and leaders, as well as, tribal elders are to work together to assure the professional development model and materials are developed in a culturally inclusive manner. The evidence-based outcome of this project is that Native American students effectively learn mathematics and science with the longer-term influence being improvement in student achievement.
DATE: -
TEAM MEMBERS: Kurt Becker James Barta Rebecca Monhardt
resource project Public Programs
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE: -
TEAM MEMBERS: Vivian Altmann Darlene Librero Virginia Witt Michael Funk
resource project Public Programs
The National Nanotechnology Infrastructure Network (NNIN) is a partnership of 13 institutions (Cornell University, Georgia Institute of Technology, Harvard University, Howard University, North Carolina State University (affiliate), Pennsylvania State University, Stanford University, University of California at Santa Barbara, University of Michigan, University of Minnesota, University of New Mexico, University of Texas at Austin, and University of Washington) that provides multi-faceted, interdisciplinary, and broadly-accessible infrastructure supporting both near-term and long-term needs identified in the National Nanotechnology Initiative. The partnering facilities are open laboratories providing outstanding service to the external user, comprehensive training and staff support, and support of interdisciplinary and emerging areas of research, with openness to new materials, techniques, and applications.
DATE: -
TEAM MEMBERS: Sandip Tiwari Daniel Ralph Roger Howe
resource project Media and Technology
Maine is a rural state with unequal access to computers and information technology. To remedy this, the Maine laptop program supplies iBooks to every seventh and eighth grade student in the state. The goal of EcoScienceWorks is to build on this program and develop, test and disseminate a middle school curriculum featuring computer modeling, simple programming and analysis of GIS data coupled with hands-on field experiences in ecology. The project will develop software, EcoBeaker: Maine Explorer, to stimulate student exploration of information technology by introducing teachers and students to simple computer modeling, applications of simulations in teaching and in science, and GIS data manipulation. This is a three-year, comprehensive project for 25 seventh and eighth grade teachers and their students. Teachers will receive 120 contact hours per year through workshops, summer sessions and classroom visits from environmental scientists. The teachers' classes will field test the EcoScienceWorks curriculum each year. The field tested project will be distributed throughout the Maine laptop program impacting 150 science teachers and 17,000 middle school students. EcoScienceWorks will provide middle school students with an understanding of how IT skills and tools can be used to identify, investigate and model possible solutions to scientific problems. EcoScienceWorks aligns with state and national science learning standards and integrates into the existing middle school ecology curriculum. An outcome of this project will be the spread of a field tested IT curriculum and EcoBeaker: Maine Explorer throughout Maine, with adapted curriculum and software available nationally.
DATE: -
TEAM MEMBERS: Walter Allan Eric Klopfer Eleanor Steinberg
resource project Professional Development, Conferences, and Networks
The "Playful Invention and Exploration (PIE) Institute" is a three-year project to increase the capacity of museum educators and exhibitors to design and implement technology-integrated inquiry activities for the public. The collaborators include the Exploratorium, MIT Media Lab, Science Museum of Minnesota, Fort Worth Museum of Science and History, Explora Science Center and the Children's Museum of Albuquerque. The deliverables include a portfolio of technology-rich activities, professional development institutes, online educator resources and a handbook of pedagogical design principles for museum educators. This project builds upon prior NSF supported work that developed the PIE Network, which among other things developed the "cricket," an inexpensive computer that makes informal learning inquiry activities more compelling. This project has the potential to impact both the theory and practice of informal science education in museums. It will implement new theories and tools that represent a new approach to engaging and supporting visitors' learning experiences using play and experimentation that mirrors the processes of laboratory investigation. It also provides an innovative model of collaboration that develops and implements a major complex project by bringing together science centers with unique and complementary expertise.
DATE: -
TEAM MEMBERS: Mike Petrich Collen Blair Karen Wilkinson Kristen Murray Keith Braafladt Robert Lindsey Samuel Dean
resource project Public Programs
What's the BIG Idea? will infuse STEM content and concepts into librarians' practice in order to establish the public library as the site of ongoing, developmentally appropriate, standards-based STEM programming for young children and their families. This project will facilitate the infusion of STEM content and concepts into all aspects of library service -- programming, collections development, displays, newsletters, and bibliographies. Science educators and advisors will review and critique the project's STEM content. Building on prior NSF-funded projects, an experienced team of STEM developers and trainers will provide librarians with the content, skills and processes needed to stimulate innovative STEM thinking. Vermont Center for the Book (VCB) will train and equip librarians from three different library systems -- Houston, Texas, the Clinton-Essex-Franklin Library System in New York and statewide in Delaware. The strategic impact of this project is ongoing STEM programming for children and families in large, small, urban and rural libraries. VCB will investigate these questions, among others: How can the public library become a STEM learning center? What information, knowledge, training and materials do librarians need to infuse appropriate science and mathematics language and process skills into their practice and programming? Who are the community partners who can augment that effort? How can the answers to these questions be disseminated nationally? Innovation stems from: 1) STEM content to incorporate into their current practice and 2) skills and processes to create their own STEM programming. In addition, the results will be transferable to a wide range of libraries throughout the nation. The Intellectual Merit lies in augmenting librarians' current expertise so that they can incorporate STEM content and materials into all aspects of the library, a universal community resource. The Broader Impact lies in creating a body of content and approaches to programming that librarians all over the country can use to infuse mathematics and science language and content into their interactions with peers, children, families and the community. This will allow inquiry into what and how new informal STEM knowledge and practice can be effectively introduced into a variety of library settings.
DATE: -
TEAM MEMBERS: Sally Anderson Gregory DeFrancis
resource project Public Programs
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
DATE: -
TEAM MEMBERS: Charles Fritz Gerald VanAmburg
resource project Public Programs
The St. Louis Science Center, in collaboration with the City College of New York and the Science Museum of Minnesota, will combine their considerable expertise with youth programs to create new opportunities for after-school STEM learning. Teens, ages 14-17, currently participating in the "Youth Exploring Science" program at the St. Louis Science Center and the Youth Science Center at the Science Museum of Minnesota will receive intensive training to prepare them to assume the role of lead designers of Learning Places that will be created in nine-after school programs in St. Louis and St. Paul. "Learning Places" are educational environments supported by hands-on activities and innovative strategies that integrate science, mathematics and technology into after-school programs. In the final year of the grant the project will be disseminated to five museums across the US including the Pacific Science Center (Seattle, WA), Headwaters Science Center (Bemidji, MN), Explora (Albuquerque, NM), and Sciencenter (Ithica, NY). Youth program staff, and staff and administrators in after-school programs and partnering museums will also benefit from training and professional development. Deliverables include 27 "Learning Places," a teen training program, a Resource Guide for implementation and research contributions to the field.
DATE: -
TEAM MEMBERS: Diane Miller Gary Benenson Holly Hughes Mary Ann Steiner Theresa Stets Christine (Kit) Klein
resource project Professional Development, Conferences, and Networks
The Computer Clubhouse Network, based at the Museum of Science in Boston, has developed a successful model for engaging youth ages 10-18 in technology-related activities. This planning grant will build on the best practices acquired over the 12-year history of the Computer Clubhouse and identify materials and resources to support professionals at community sites and after school centers with similar goals. The planning activities will inform the creation of professional development workshops and resources to improve the quality of technology programs for youth. Project partners include the MIT Media Lab; Fairfax County Department of Community and Recreation Services (Fairfax, VA); Westside Youth Technology Entrepreneur Center (Chicago, IL); Little Haiti Housing Association (Miami, FL); and Youth Opportunities Unlimited (Los Angeles, CA). The project deliverables include an analysis of existing programs; a staff needs assessment; examination of effective professional development strategies, pilot workshops and online resources, and a matrix to measure program effectiveness. Strategic impact will be realized through the design of resources that support content-rich programs and improve sustainability in community technology programs nationwide.
DATE: -
TEAM MEMBERS: Gail Breslow