Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The American Association for the Advancement of Science (AAAS) and the National Science Foundation (NSF) will continue its collaboration in providing to early- and mid-career scientists and engineers experiential professional development and public service fellowships via the AAAS Science and Technology Fellowship Program. Consistent with the immersion model adopted by AAAS, Fellows at NSF will be selected annually through a competitive process and placed in organizations throughout the Foundation. Fellows will work with NSF staff on a broad range of activities in order to gain insight into how national science and technology policy goals are translated into and reflected by NSF's mission and strategic goals and how and by whom national science and technology policy is driven, shaped and prioritized. NSF fellowship assignments are designed to: educate and expose Fellows to NSF programmatic planning, development and oversight activities in all fields of fundamental research via hands-on engagement; utilize the Fellows' expertise on projects that apprise NSF officials in areas of mutual interest to the Fellow and the host organization; and provide developmental opportunities to inform future career decisions. The program includes an orientation on executive branch and congressional operations, as well as a year-long suite of knowledge- and skill-building seminars involving science, technology and public policy within the federal as well as NSF contexts.

In the long-term, the AAAS Fellowship program seeks to build leadership capacity for a strong national science and engineering enterprise. Upon completion of the Fellowship, Fellows will have gained: a broader understanding and increased insights about the development and execution of federal-level science, technology, engineering and mathematics policies and initiatives as well as how policy and science intersect; enhanced skills in communicating science to support policy development; and a greater capacity to serve more effectively in future leadership roles in diverse environments, including public and policy arenas, academia and the private sector. The ultimate outcome of the Fellowship program experience -- policy savvy science and engineer leaders who understand government and policymaking and are well-trained to develop and execute solutions to address the nation's challenges.
DATE: -
TEAM MEMBERS: Olga Francois Cynthia Robinson
resource evaluation Public Programs
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
DATE:
TEAM MEMBERS: Cecilia Garibay
resource project Professional Development, Conferences, and Networks
EvaluATE is a national resource center dedicated to supporting and improving the evaluation practices of approximately 250 ATE grantees across the country. EvaluATE conducts webinars and workshops, publishes a quarterly newsletter, maintains a website with a digital resource library, develops materials to guide evaluation work, and conducts an annual survey of ATE grantees. EvaluATE's mission is to promote the goals of the ATE program by partnering with projects and centers to strengthen the program's evaluation knowledge base, expand the use of exemplary evaluation practices, and support the continuous improvement of technician education throughout the nation. EvaluATE's goals associated with this proposal are to: (1) Ensure that all ATE Principal Investigators and evaluators know the essential elements of a credible and useful evaluation; (2) Maintain a comprehensive collection of online resources for ATE evaluation; (3) Strengthen and expand the network of ATE evaluation stakeholders; and (4) Gather, synthesize, and disseminate data about the ATE program activities to advance knowledge about ATE/technician education. The Center plans to produce a comprehensive set of evaluation resources to complement other services, engaging several community college-based Principal Investigators and evaluators in that process.

EvaluATE's products are informed by current research on evaluation, the National Science Foundation's priorities for the evaluation of ATE grants, and the needs of ATE PIs and evaluators for sound guidance that is immediately relevant and usable in their contexts. The fundamental nature of EvaluATE's work is geared toward supporting ATE grantees to use evaluation regularly to improve their work and demonstrate their impacts. All of EvaluATE's products are available to the public. EvaluATE's findings from the annual survey of ATE grantees aid in advancing understanding of the status of technician education and illuminate areas for additional research. The new survey investigates ATE grantees' work to serve underrepresented and special populations, including women, people of color, and veterans. Survey data are available upon request for research and evaluation purposes.
DATE: -
TEAM MEMBERS: Lori Wingate Arlen Gullickson Emma Perk Kelly Robertson Lyssa Becho
resource research Media and Technology
As a leader in the science museum field, the New York Hall of Science (NYSCI) is a destination for hands-on, interactive exhibitions and innovative programs. NYSCI’s Design-Make-Play (DMP) pedagogical approach to STEM learning recognizes that what is essential is not only the content—what is being taught—but how teaching and learning are imagined through the curriculum. This commitment to practice builds off of interest-based learning research, which emphasizes that all learners should feel a sense of efficacy and possibility. The hallmarks of this approach include deep personal engagement
DATE:
TEAM MEMBERS: Amanda Solarsh Gina Tesoriero Michaela Labriole Tara Chudoba
resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez
resource project Professional Development, Conferences, and Networks
Jobs are growing most rapidly in areas that require STEM knowledge, causing business leaders to seek skilled American workers now and in the near future. Increase in the number of students pursuing engineering degrees is taking place but the percentages of underrepresented students in the engineering pipeline remains low. To address the challenge of increasing the participation of underrepresented groups in engineering, the National Society of Black Engineers, the American Indian Science and Engineering Society, the Society of Hispanic Professional Engineers, and the Society of Women Engineers have formed the 50K Coalition, a collaborative of over 40 organizations committed to increasing the number of bachelors degrees awarded to women and minorities from 30,000 annually to 50,000 by 2025, a 66% increase. The 50K Coalition is using the Collective Impact framework to develop an evidence-based approach that drives management decision-making, improvements, sharing of information, and collective action to achieve success. The first convening of the 50K Coalition in April, 2016, brought together 83 leaders of the engineering community representing 13 professional societies with over 700,000 members, deans of engineering, minority engineering and women in engineering administrators from 11 leading colleges of engineering, and corporate partners representing six global industries. Consensus was reached on the following Common Agenda items: 1.) Undergraduate support and retention; 2.) Public awareness and marketing; 3.) K-12 support; 4.) Community College linkages; 5.) Culture and climate. The Coalition will encourage member organizations to develop new programs and scale existing programs to reach the goal.

The Coalition will use shared metrics to track progress: AP® Calculus completion and high school graduation rates; undergraduate freshmen retention rates; community college transfer rates and number of engineering degrees awarded. The 50K Coalition will develop the other elements of the Collective Impact framework: Infrastructure and effective decision-making processes that will become the backbone organization with a focus on data management, communications and dissemination; a system of continuous communication including Basecamp, website, the annual Engineering Scorecard, WebEx hosted meetings and convenings; and mutually reinforcing activities such as programs, courses, seminars, webinars, workshops, promotional campaigns, policy initiatives, and institutional capacity building efforts. The National Academy of Sciences study, Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads recommended that professional associations make recruitment and retention of underrepresented groups an organizational goal and implement programs designed to reach that goal by working with their membership, academic institutions and funding agencies on new initiatives. While these types of organizations work together now in a variety of ways, the relationships are one-on-one. The 50K Coalition brings together, for the first time professional societies, engineering schools, and industry to consider what mutually reinforcing activities can most effectively encourage students from underrepresented groups to complete calculus and graduate from 4-year engineering programs.
DATE: -
TEAM MEMBERS: Karl Reid Barry Cordero Sarah Ecohawk Karen Horting
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource project Professional Development, Conferences, and Networks
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments.

The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez Anthonette Pena
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.

This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.
DATE: -
TEAM MEMBERS: Liz Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.

Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.

Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.

This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
DATE: -
TEAM MEMBERS: David Uttal Kemi Jona
resource evaluation Professional Development, Conferences, and Networks
The NISE Network Professional Impacts Summative Evaluation is a longitudinal examination of individual professionals over the final three years of NISE Net funding. This investigation is based on the NISE Network goals for professionals and explores how involvement with NISE Net impacts an individual professional’s sense of community, learning about nano, and use of nano educational products and practices. This evaluation primarily included professional partners who were: (1) Informal Science Educators (ISE): Professionals from science museums and children’s museums implementing informal
DATE: