Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Exhibitions
Flip It, Fold It, Figure It Out! is a 1500-sq. foot traveling mathematics exhibition with companion take-home educational materials. There are two copies of the traveling exhibit: one for the members of the North Carolina Grassroots Science Museums Collaborative reaching over 500,000 visitors, and a second for travel nationally to science centers reaching an estimated 750,000 additional visitors. Take-home activity kits were developed for visitors to continue informal mathematics explorations at home. The activities included expand and extend the exhibit themes, offering multiple levels to meet the needs of K-5 students and their families.
DATE: -
TEAM MEMBERS: Deborah May
resource project Public Programs
Math in the Garden is a collaborative project between the University of California's Botanic Garden and 17 organizations around the nation that work with underserved urban youth, as well as rural communities. The project will create a series of five (5) guidebooks with activities that bring adults and children together in the garden to learn the mathematics inherent in the nature of gardening. The materials and activities will teach mathematical concepts and skills, feature plants, flowers, and fruits as math manipulatives, promote active learning, and support NCTM and National Science Standards. The guides will organize activities into clusters for various times of the year and contain appropriate activities for elementary through middle school-aged youth. Partner organizations will coordinate a trial test. Afterwards, the formative evaluation will guide the revision and finally, national distribution of the guides will be in conjunction with Dale Seymour Publishers. A national Advisory Committee of mathematicians, botanists, science educators, math educators, botanical garden staff, and leaders working in community gardens has been established. The entire project will be evaluated at every stage of development for its ability to increase math skills, garden knowledge, and to encourage young people to engage in active, inquiry learning.
DATE: -
TEAM MEMBERS: Katharine Barrett
resource project Professional Development, Conferences, and Networks
TERC and ASTC will collaborate with thirteen science and technology centers around the country to create and implement a professional development program for science center staff. The goal of this project is to use exhibits and educational programs as a vehicle for building a presence for mathematics in science centers nationwide. The participating science centers will develop mathematics initiatives while working with TERC and ASTC to create workshops on topics such as data, measurement, algebra, national standards and visitor accessibility. Start-up sites will create training networks in California, Florida, Massachusetts, Missouri, Minnesota, New Jersey, New York, North Carolina, Oregon and Texas. Workshops will be offered on-line and also at local and national conferences. The project will produce a publication entitled "Promising Math Practices in Science Centers" that will highlight best practices for the incorporation of mathematics into museum programs. It is anticipated that the number of participating institutions will increase to 120 during the life of the project.
DATE: -
TEAM MEMBERS: Janice Mokros Marlene Kliman DeAnna Beane Andee Rubin
resource project Public Programs
Children's Discovery Museum of San Jose, CA, will develop a three-pronged project called "Round and Round" focused on the geometry, science and technology of circles and wheels. All three project products (one permanent and one traveling version of a 2000-sq. ft. exhibition; an array of complementary educational programs for children ages 3-10; and published research on patterns of interactions among families of diverse backgrounds in museum settings) will be developed in cooperation with developmental psychologists from the University of California at Santa Cruz and advisors from Latino and Vietnamese communities in San Jose. "Round and Round" exhibits and programs will offer a trans-cultural, gender-neutral, and multi-disciplinary look at the ingenuity and ubiquity of circles. Together they will provide a comprehensive array of interactive experiences that help children, ages 3-10, and adults explore the mathematics, physics, physical properties and engineering advantages of circles and wheels. The project is expected to serve three million visitors in science and children's museums across the nation within four years of implementation.
DATE: -
resource project Professional Development, Conferences, and Networks
The purpose of this project is to enhance African American parental involvement with high school student children by developing skills and strategies for effectively managing the educational careers of their children. It would create a capacity for collaborations with the schools that service African American children by developing the social and organizational infrastructure for continued parental involvement in educational careers. It seeks to increase enrollment and success of Black students in higher-level mathematics and science courses to diminish the race gap in math and science track placements. It uses a quasi-experimental design to implement a series of community workshops designed to enhance knowledge, skills, and strategies for managing placements of children in science and math tracks. The research would create an intervention designed to change the outcome of students. It would conduct ethnographic work to map successful pathways to enrollment in higher-level math courses. It would use findings from these studies to implement workships within the Black communities, and conduct statistical analysis of the growth in achievement as a result of the reduction in course taking.
DATE: -
TEAM MEMBERS: Roslyn Mickelson Linwood Cousins
resource project Informal/Formal Connections
This project develops an 8-week middle-school mathematics module that introduces cryptography, the science of sending secret messages, while teaching and reinforcing the learning of related mathematical concepts. The topics range from the classical encryption systems and the historic context in which they were used through powerful modern encryption systems that provide secrecy in electronic messages today. The module also covers passwords and codes that correct errors in the transmission of information. Public awareness of the importance of cryptography is growing, as is the need to understand the issues involved. The study of cryptography provides an interesting context for students to apply traditional mathematical skills and concepts. Mathematical topics covered include percents, probability, functions, prime numbers, decimals, inverses and modular arithmetic. The main product is a middle-school student book, with accompanying teacher materials. A web site is being developed that supports the activities in this book. Abbreviated modules for Grades 3, 4 and 5 are also being developed, as well as an instructor's guide for adapting the materials for use in informal educational settings such as museums and after-school programs. The development of the module involves piloting and field-testing by experienced classroom teachers from diverse school communities and instructors of informal educational programs. Evaluation includes review by mathematicians and educators, as well as an investigation into the level of students' understanding of the topics studied.
DATE: -
TEAM MEMBERS: Janet Beissinger Vera Pless
resource project Public Programs
The Developmental Studies Center (DSC) will implement "Home, School and Community: AfterSchool Math for Grades 3-5," a program that targets at-risk and low income children in afterschool programs. AfterSchool Math trains youth workers to help students in grades 3-5 better understand measurement and geometry concepts, building on the success of the NSF-funded Home, School and Community mathematics program for grades K-2 (ESI #97-05421). The project develops, field-tests and evaluates thirty math games and ten story guides, which support the social and mathematical development of children, while emphasizing cooperative learning. The content for all materials will be aligned with national standards in mathematics. A 12-hour professional development workshop for youth workers and an 18-hour workshop for facilitators or youth worker leaders are also planned. Two training videos and a facilitator manual will be produced to support this aspect of the project. Field testing will occur in Kansas, Louisiana and Missouri. This proposal has been augmented to include a special emphasis on rural communities which doubles the number of field test sites from 50 to 100. A Rural Outreach Specialist will conduct focus group meetings to determine needs unique to rural programs and lead the field testing in these communities. It is anticipated that over 3,200 youth workers will be trained and a national cadre of more than 300 youth worker leaders will be created.
DATE: -
TEAM MEMBERS: Frank Snyder
resource project Media and Technology
Education Development Center (EDC) is developing and implementing a three-year project to promote the informal learning of key basic mathematical concepts and skills among undereducated adults throughout the country. The effort will be part of EDC's Adult Literacy Media Alliance (ALMA). The principal components of the project will be: Ten new, half-hour episodes of the television series, TV411, which is currently carried by approximately 100 public television stations. The new programs will shift the emphasis of the series from reading literacy to mathematics skills. In addition to covering a broad array of mathematical concepts, procedures and vocabulary, the programs will have an explicit focus on problem-solving strategies and attitudes about mathematics. A multi-level national outreach and marketing campaign to attract viewers and users to the materials and to increase carriage of the series. An in-depth implementation effort will be conducted with outreach partners is six large metropolitan areas. EDC will adapt the outreach, marketing and promotion aspects of this focused effort so that it can be used by all television stations that commit to carry the series. Formative and summative evaluation to enhance the quality and effectiveness of the materials and to inform the understanding of the impact on viewers and users of these types of materials.
DATE: -
TEAM MEMBERS: Alexander Quinn
resource project Informal/Formal Connections
Investigations in Number, Data and Space is an elementary school mathematics curriculum which reflects research on, and best practices in, learning and teaching mathematics in grades K-5. NSF funded the development of the original curriculum, starting in 1990. This revision of the "Investigations" curriculum will focus on the integration of algebraic thinking throughout the curriculum, the development of comprehensive assessment tools, and the strengthening of the number and operations strand. This work is informed by feedback from the field, as well as by recent recommendations for improving the mathematics curriculum. These revisions will be carried out and tested in an established network of school system partners, teacher collaborators and educational leaders. In addition to revising the curriculum, the project will develop materials to support teachers as they implement the curriculum. Additional materials will be developed for parents and administrators. The summative evaluation of the project will include longitudinal student achievement data, following two groups of students for three years each. Cost sharing will include substantial contributions from the publisher, Scott Foresman, and the developer, TERC.
DATE: -
TEAM MEMBERS: Susan Jo Russell Karen Economopoulos
resource project Public Programs
The Delta Research & Education Foundation (DREF) is following up on a successful planning grant with the Science and Everyday Experiences (SEE) Initiative. The SEE Initiative will be implemented by the Delta Sigma Theta Sorority, a non-profit organization composed of 190,000 predominantly African-American professionals, that provides programs and services to promote human welfare. The program offers a five-year, comprehensive approach to the delivery of resources designed to help parents and caregivers of African-American children in grades K-8 effectively support informal science and math learning. By partnering with the AAAS, SEE provides members of the 800+ Delta chapters with leadership and professional development training in informal science education. The first phase of training is a three-day professional development workshop for Delta regional officers and members. Regional leaders are prepared to conduct State Chapter Leadership Professional Development Workshops. State Chapter workshops are 12-hour sessions that train 4,200 sorority members per year to sponsor ongoing family science events. Finally, Delta members that are K-12 or community educators will be designated as Parent Educators. SEE Parent Educators will receive 40-hour training sessions from AAAS, which enables participants to provide parents with 24 hours of informal science education. It is anticipated that 2,800 SEE Parent Educators will be trained during the life of the grant. Delta chapters are located in seven geographical regions, which encompass 40 states and will serve as the primary mode of dissemination. Promotion of the SEE Initiative will occur in conjunction with media partners. A 30-minute science radio talk show for families will broadcast nationally on Radio One and inquiry-based science inserts will be placed in the Afro-American Newspaper, which has a circulation of 6.5 million. Other outcomes include an informational website, as well as science activity cards for families and training materials. This project will impact 17,500 families per year.
DATE: -
TEAM MEMBERS: Barbara Davis Sue White Louise Taylor Shirley Malcom