Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Exhibitions
Flip It, Fold It, Figure It Out! is a 1500-sq. foot traveling mathematics exhibition with companion take-home educational materials. There are two copies of the traveling exhibit: one for the members of the North Carolina Grassroots Science Museums Collaborative reaching over 500,000 visitors, and a second for travel nationally to science centers reaching an estimated 750,000 additional visitors. Take-home activity kits were developed for visitors to continue informal mathematics explorations at home. The activities included expand and extend the exhibit themes, offering multiple levels to meet the needs of K-5 students and their families.
DATE: -
TEAM MEMBERS: Deborah May
resource project Informal/Formal Connections
In several primarily Hispanic, low socio-economic school districts of the southwest in partnership with local institutions of higher learning, this 48-month project will develop programs and materials to attract parents of children of all grade levels and make them active supporters of a system that promotes good mathematical learning for their children. These programs and materials will help them become aware of what is happening in their children's classroom; offer them occasions to take on leadership roles in working with teachers, administrators, and other parents; and provide them opportunities for in-depth experiences with school mathematics. The materials will be initially developed and piloted in the Sunnyside School District. After revision from the pilot project, the project will be implemented in several other school districts.
DATE: -
TEAM MEMBERS: David Gay Marta Civil
resource project Public Programs
Math in the Garden is a collaborative project between the University of California's Botanic Garden and 17 organizations around the nation that work with underserved urban youth, as well as rural communities. The project will create a series of five (5) guidebooks with activities that bring adults and children together in the garden to learn the mathematics inherent in the nature of gardening. The materials and activities will teach mathematical concepts and skills, feature plants, flowers, and fruits as math manipulatives, promote active learning, and support NCTM and National Science Standards. The guides will organize activities into clusters for various times of the year and contain appropriate activities for elementary through middle school-aged youth. Partner organizations will coordinate a trial test. Afterwards, the formative evaluation will guide the revision and finally, national distribution of the guides will be in conjunction with Dale Seymour Publishers. A national Advisory Committee of mathematicians, botanists, science educators, math educators, botanical garden staff, and leaders working in community gardens has been established. The entire project will be evaluated at every stage of development for its ability to increase math skills, garden knowledge, and to encourage young people to engage in active, inquiry learning.
DATE: -
TEAM MEMBERS: Katharine Barrett
resource project Public Programs
Learning to Work with the Public in the Context of Local Systemic Change is a five-year Teacher Enhancement initiative to build a knowledge base and develop the necessary tools and resources for teachers and administrators to engage with their parents and public in pursuit of quality mathematics, and to prepare teacher leaders and administrators to successfully lead these efforts in their schools. The project has three major components: (1) focused and sustained work with teachers, administrators, school boards, parents and the public in strategically located current and potential NSF-supported Local Systemic Change communities; (2) the development and implementation of mathematics sessions and materials designed for parents/public and informed by the project's research/findings, and the preparation of teacher leaders and administrators to conduct these sessions within their own communities; and (3) dissemination conferences and other outreach activities. More specifically, the project will (a) engage in studies that identify the elements critical for successful intervention with parents and the public, (b) develop materials that can be used by lead teachers and other educational leaders to work with peer teachers and the broader public in their home communities, and (c) provide the professional development necessary to support implementation. The plan of work for the project is designed around the following questions: (1) What does it take to secure a public that is knowledgeable of issues in mathematics education and knowledgeable of what it means to teach important and relevant mathematics for understanding? (2) Will a knowledgeable public support and/or actively advocate for mathematics reform? If so, what is the nature of their advocacy? (3) What impact will a knowledgeable and/or proactive public have on the efforts of current and potential Local Systemic Change (LSC) projects to improve the quality of mathematics instruction in schools? (4) Are there critical times during mathematics restructuring efforts when parent engagement is essential? If so, what are those times and what is the nature of support needed? (5) What are the critical issues and caveats that need to be considered in designing and delivering successful mathematics education sessions for parents and the public? (6) What kinds of public engagement can best be accomplished by teacher leaders working within their own communities? What kinds of support do local leaders need in order to work successfully with parents and the public? (7) What kinds of public engagement can best be accomplished by national mathematics education leaders who come into a community on a limited basis? The work to be performed in the project is a carefully designed effort to develop a more practice-based understanding of the critical elements needed for productive public involvement in support of quality mathematics. Sites participating in the plan of work are Portland (OR), St. Vrain (CO), and San Francisco (CA). Resources and tools (e.g., deliverables) planned include professional development materials that can be used by teacher leaders and administrators as they work with peer teachers, as well as with parents and the public; rough-cut video tapes that are potentially useful in these professional development sessions; and a website. Cost sharing is derived from participating school districts and the Exxon and Intel Foundations.
DATE: -
TEAM MEMBERS: Ruth Parker Janeane Golliher Dominic Peressini Lisa Adajian
resource project Public Programs
The Museum of Science in Boston will develop exhibits and programs for visitors to use models as tools for understanding the world around them. It is the 4th stage of a six-part, long-range vision and plan that focuses on comprehending science as a way of thinking and doing. "Making Models" will serve over one million visitors per year, mostly families and school groups. The models to be featured include physical, biological, conceptual, mathematical, and computer simulation models. Four (4) specific science inquiry skills will be stressed, which are associated with making and using models: recognition of similarities, assessment of limitations, communication of ideas, and the creation of one's own models for developing personal understanding and appreciation of the world in which we live. In tandem with this new exhibit, some current exhibits and programs will be modified to meet these modeling goals. Demonstrating the application of these new exhibit techniques for other museums and science centers, and evaluating how visitors learn in this setting will also be performed, with the results disseminated on a national level. The Museum will collaborate with two (2) other nationally known sites in this development and evaluation of exhibit components, creation of new teacher development programs, and the development of models-related web resources.
DATE: -
TEAM MEMBERS: Douglas Smith Larry Bell Paul Fontiane
resource project Professional Development, Conferences, and Networks
TERC and ASTC will collaborate with thirteen science and technology centers around the country to create and implement a professional development program for science center staff. The goal of this project is to use exhibits and educational programs as a vehicle for building a presence for mathematics in science centers nationwide. The participating science centers will develop mathematics initiatives while working with TERC and ASTC to create workshops on topics such as data, measurement, algebra, national standards and visitor accessibility. Start-up sites will create training networks in California, Florida, Massachusetts, Missouri, Minnesota, New Jersey, New York, North Carolina, Oregon and Texas. Workshops will be offered on-line and also at local and national conferences. The project will produce a publication entitled "Promising Math Practices in Science Centers" that will highlight best practices for the incorporation of mathematics into museum programs. It is anticipated that the number of participating institutions will increase to 120 during the life of the project.
DATE: -
TEAM MEMBERS: Janice Mokros Marlene Kliman DeAnna Beane Andee Rubin
resource project Media and Technology
The Education Development Center, Incorporated, requests $2,081,018 to create informal learning opportunities in science, mathematics, engineering and technology utilizing the study of the ancient African civilization of Nubia as context. Educational activities and resources will be developed based on the extensive ongoing archeological research on historical Nubia. The two main components of the project are a traveling exhibit with related educational materials and a website that will provide the target audience an opportunity to access extensive on-line resources and activities. The project will provide community outreach and professional development for educators in museums, community groups, schools and libraries. The project is designed for thirty-six months' duration. In year one, a network of collaborators in the Boston area will focus on research and development; in year two, project materials will be piloted and evaluated in six cities, and on-line professional development programs will be conducted; and in year three, project materials will be disseminated directly to 60 sites and more broadly via the internet.
DATE: -
TEAM MEMBERS: Kristen bjork Ronald Bailey
resource project Public Programs
Children's Discovery Museum of San Jose, CA, will develop a three-pronged project called "Round and Round" focused on the geometry, science and technology of circles and wheels. All three project products (one permanent and one traveling version of a 2000-sq. ft. exhibition; an array of complementary educational programs for children ages 3-10; and published research on patterns of interactions among families of diverse backgrounds in museum settings) will be developed in cooperation with developmental psychologists from the University of California at Santa Cruz and advisors from Latino and Vietnamese communities in San Jose. "Round and Round" exhibits and programs will offer a trans-cultural, gender-neutral, and multi-disciplinary look at the ingenuity and ubiquity of circles. Together they will provide a comprehensive array of interactive experiences that help children, ages 3-10, and adults explore the mathematics, physics, physical properties and engineering advantages of circles and wheels. The project is expected to serve three million visitors in science and children's museums across the nation within four years of implementation.
DATE: -
resource project Professional Development, Conferences, and Networks
The purpose of this project is to enhance African American parental involvement with high school student children by developing skills and strategies for effectively managing the educational careers of their children. It would create a capacity for collaborations with the schools that service African American children by developing the social and organizational infrastructure for continued parental involvement in educational careers. It seeks to increase enrollment and success of Black students in higher-level mathematics and science courses to diminish the race gap in math and science track placements. It uses a quasi-experimental design to implement a series of community workshops designed to enhance knowledge, skills, and strategies for managing placements of children in science and math tracks. The research would create an intervention designed to change the outcome of students. It would conduct ethnographic work to map successful pathways to enrollment in higher-level math courses. It would use findings from these studies to implement workships within the Black communities, and conduct statistical analysis of the growth in achievement as a result of the reduction in course taking.
DATE: -
TEAM MEMBERS: Roslyn Mickelson Linwood Cousins
resource project Public Programs
This creative project pairs grandparents or other senior citizens with children in grades K-7 for an intergenerational hands-on SMT program. The OASIS institute, which has a large national membership of adults 55 and older with centers based in 25 cities across the US, is the source of adults. Twenty intergenerational modules will be developed which address the learning styles of both children and older adults, half of which will be linked with the NSF-funded "Find Out Why" materials. Master training sessions will be conducted for OASIS trainers, who would then train volunteers at their local centers. Anticipated outcomes include increased knowledge of standards-based SMT concepts, enhanced problem-solving skills and a better understanding of how science, math and technology apply to everyday life. In addition to the modules, the program would also result in the creation of a supplementary guide for volunteers, materials kits and a comprehensive training program. It is anticipated that this exciting program will be piloted in the following nine states: MO, IN, OR, MD, AZ, TX, CA, IL and OH. Over 100,000 individuals will be impacted during the three years of the project.
DATE: -
TEAM MEMBERS: Russell Morgan Ann Benbow