Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:


What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?



This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
DATE: -
TEAM MEMBERS: Andee Rubin
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Math is everywhere in the world, but youth may see math as disconnected from their everyday experiences and wonder how math is relevant to their lives. There is evidence that informal math done by children is highly effective, involving efficiency, flexibility, and socializing. Yet, more is needed to understand how educators can support math engagement outside of school, and the role these out-of-school experiences can play relative to the classroom and lifelong STEM learning. This Innovations and Development Project seeks to conduct research on a location-based mobile app for informal mathematics learning. This research takes place at 9 informal learning sites and involves iteratively designing an app in which learners can view and contribute to an interactive map of math walk “stops” at these sites. Learners will be able to select locations and watch short videos or view pictures with text that describe how mathematical principles are present in their surroundings. For example, learners could use the app to discover how a painting by a local Latino artist uses ratio and scale, or how a ramp in downtown was designed with a specific slope to accommodate wheelchairs. Research studies will examine the affordances of augmented reality (AR) overlays where learners can hold up the camera of their mobile device, and see mathematical representations (e.g., lines, squares) layered over real-world objects in their camera feed. Research studies will also examine the impact of having learners create their own math walk stops at local informal learning sites, uploading pictures, descriptions, and linking audio they narrate, where they make observations about how math appears in their surroundings and pose interesting questions about STEM ideas and connections they wonder about.

This project draws on research on informal math learning, problem-posing, and culturally-sustaining pedagogies to conduct cycles of participatory design-based research on technology-supported math walks. The research questions are: How does posing mathematical scenarios in community-imbedded math walks impact learners’ attitudes about mathematics? How can experiencing AR overlays on real world objects highlight mathematical principles and allow learners to see math in the world around them? How can learners and informal educators be engaged as disseminators of content they create and as reviewers of mathematical content created by others? To answer these questions, five studies will be conducted where learners create math walk stops: without technology (Study 1), with a prototype version of the app (Study 2), and with or without AR overlays (Study 3). Studies will also compare children's experiences receiving math walk stops vs. creating their own stops (Study 4) and explore learners reviewing math walk stops made by their peers (Study 5). Using a community ethnography approach with qualitative and quantitative process data of how youth engage with the app and with each other, the project will determine how the development of math interest can be facilitated, how learner-driven problem generation can be scaffolded, and under what circumstances app-based math walks are most effective. The results will contribute to research on the development of interest, problem-posing, informal mathematics learning, and digital supports for STEM learning such as AR. This project will promote innovation and have strategic impact through a digital infrastructure that could be scaled up to support STEM walks anywhere in the world, while also building a local STEM learning ecosystem among informal learning sites focused on informal mathematics. This project is a partnership between Southern Methodist University, a nonprofit, talkSTEM that facilitates the creation of community math walks, and 9 informal learning providers. The project will directly serve approximately 500 grades 4-8 learners and 30-60 informal educators. The project will build capacity at 9 informal learning sites, which serve hundreds of thousands of students per year in their programming.

This Innovations in Development project is supported by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Candace Walkington Anthony Petrosino Cathy Ringstaff koshi dhingra Elizabeth Stringer