Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
DATE:
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich
resource research Media and Technology
There is a recognized need to rigorously examine the efficacy of approaches to supporting informal learning. In this study, we used a 2 × 2 factorial experimental design to test the impact of a computer guide on 3 proximal measures of visitor learning at an interactive math exhibit. In total, 128 families were systematically assigned to engage with the exhibit either with or without access to a supplementary computer kiosk. Visitor groups with access to the computer spent longer, on average, at the exhibit and engaged in more mathematical behaviors compared to other groups. However, based on
DATE:
TEAM MEMBERS: Oregon Museum of Science and Industry Scott Pattison Scott Ewing Angela Frey
resource project Media and Technology
The University of Southern California's Institute for Creative Technologies and the Museum of Science, Boston will create life-sized, 3-D Virtual Humans that will interact with visitors as interpretive guides and learning facilitators at science exhibits. Through the use of advanced artificial intelligence and intelligent tutoring techniques, Virtual Humans will provide a highly responsive functionality in their dialogue interpretation that will generate sophisticated interaction with visitors about the STEM content related to the exhibit. The project exemplifies how the confluence of science, technology, engineering, mathematics and education can creatively and collaboratively advance new tools and learning processes. The Virtual Human project will begin to present to the visitor a compelling, real life, interactive example of the future and of the related convergence of various interdisciplinary trends in technology, such as natural language voice recognition, mixed reality environments, para-holographic display, visitor recognition and prior activity recall, artificial intelligence, and other interdisciplinary trends. The 3-D, life-sized Virtual Humans will serve as museum educators in four capacities: 1) as a natural language dialogue-based interactive guide that can suggest exhibits to explore in specific galleries and answer questions about particular STEM content areas, such as computer science; 2) as a coach to help visitors understand and use particular interactive exhibits; 3) be the core focus of the Science behind the Virtual Humans exhibit; and 4) serve as an ongoing research effort to improve human and virtual human interactions at increasingly sophisticated levels of complexity. The deliverables will be designed to build upon visitor experiences and stimulate inquiry. A living lab enables visitors to become part of the research and development process. The project website will introduce visitors to the technologies used to build virtual humans and the research behind their implementation. The site will be augmented with videos and simulations and will generate user created content on virtual human characters. Project evaluation and research will collect language and behavioral data from visitors to inform the improvement of the virtual guide throughout the duration of the grant and to develop a database that directly supports other intelligent systems, and new interface design and development that will have broad impact across multiple fields.
DATE: -
TEAM MEMBERS: William Swartout David Traum Jacquelyn Morie Diane Piepol H. Chad Lane
resource project Media and Technology
The Educational Film Center (EFC) is developing a science, engineering, and technology careers exhibit for distribution to science museums and technology centers. The core of the exhibit kiosk, with related career graphics surrounds, is SET/QUEST, an interactive multimedia program for both Macintosh and PC/Windows using CD-Rom as the full motion video source. Teens and preteens will enter an interactive exploration of thirty careers with first person video profiles of people in science and engineering; animated/reality video simulations of a work experience in these fields, decision screens, and a database of over 200 more science and math-based professions. The documentary profiles, database, and a personal interest career match component will also be developed in alternative media formats (video, audio, print) for broad distribution to community and youth education networks, schools, and libraries. Specific emphasis in this project is being placed on reaching and attracting female, minority, and disabled youth. A parent outreach component has been developed and will be implemented by the Directorate of Education & Human Resources Programs of AAAS. The concept of the parent effort is to work directly with and through the national offices of four major national organizations with different institutional community roots -- Science Museums, Public Libraries, Schools, and Community Based Organizations -- to involve parents and families with SET Project materials and to provide them with information with which they can foster their children's pursuit of science and math education and careers in these fields. Initial efforts will be conducted in 18 cities. The project is a collaborative endeavor among three organizations: The Educationa l Film Center which will be responsible for management and development/production of the software and documentary video profiles; The New York Hall of Science which will be responsible for the exhibit kiosk and graphics, will design and develop the student workbook and user installation print, will serve as the principal test site for the exhibit, and will advise on software, interactive multimedia design, and installation options; and COMAP which will be responsible for direct involvement of the Advisory Board, for selecting and hiring content consultants, for assuring the accuracy of the science and math content, for formative and summative evaluation, and for developing and preparing community leader and school users guides for publication. Stephen Rabin, President of EFC, will serve as PI for the project.
DATE: -
TEAM MEMBERS: Stephen Rabin Barbara Flagg
resource project Media and Technology
The Scientific Reasoning Research Institute at the University of Massachusetts, Amherst will conduct a feasibility study for engaging museum visitors in data analysis through this planning grant. Intellectual Merit: This project builds on the extensive prior work of the PI in developing Tinkerplots software for middle school students. At the same time, it potentially takes advantage of the many museum exhibitions that include various kinds of data but provide no mechanisms for visitors to analyze the data and draw conclusions. This project makes the connection by seeking to demonstrate the proof of concept for the transfer of this data analysis program from the formal to the informal setting. Broader Impact: This project will purposefully test three very different settings -- Museum of Science, Boston, MA; Naismith Basketball Hall of Fame, Springfield, MA; and Missouri Botanical Garden, St. Louis, MO -- to explore the advantages and limitations of this approach in those learning environments. If successful, the software could have very wide application.
DATE: -
TEAM MEMBERS: Clifford Konold
resource project Media and Technology
This project for six (6) months' duration will bring advisors and designers together to plan an environment of interactive touch-screen displays to draw high-school students and their parents into thoughtful consideration of careers in science, mathematics, and technology. Housed at Kennedy Space Center's Visitor Center and in keeping with the theme of space exploration, the visitor will become a crewmember on a future voyage and solve problems encountered on the journey via computer simulations. Veteran astronauts will narrate the scenarios, since they have actually encountered unexpected problems in space. The proposed final exhibit will have six (6) stations, each featuring a different episode and levels of complexity of a common storyline. After solving the problem using math, science, technology and critical thinking skills, a registration mechanism will enable the student to request information on spedific careers and information about post-secondary schools that offer such training.
DATE: -
TEAM MEMBERS: Gene Tavares Walter Jaworski
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee