Skip to main content

Community Repository Search Results

resource research Media and Technology
Many people believe that both public policy and personal action would improve with better access to “reliable knowledge about the natural world” (that thing that we often call science). Many of those people participate in science education and science communication. And yet, both as areas of practice and as objects of academic inquiry, science education and science communication have until recently remained remarkably distinct. Why, and what resources do the articles in this special issue of JRST give us for bringing together both the fields of practice and the fields of inquiry?
DATE:
TEAM MEMBERS: Bruce Lewenstein
resource research Public Programs
Recent decades have seen an increasing emphasis on linking the content and aims of science teaching to what the average citizen requires in order to participate effectively in contemporary society, one that is heavily dependent on science and technology. However, despite attempts to define what a scientific education for citizenship should ideally involve, a comprehensive set of key aspects has yet to be clearly established. With this in mind, the present study sought to determine empirically the extent of any consensus in Spain regarding the principal aspects of scientific competence that
DATE:
TEAM MEMBERS: Angel Blanco-Lopez Enrique Espana-Ramos Francisco Jose Gonzalez-Garcia Antonio Joaquin Franco-Mariscal
resource evaluation Public Programs
The Katonah Museum of Art (KMA) contracted Randi Korn & Associates, Inc. (RK&A) to evaluate its early childhood program, ArteJuntos/ArtTogether (ArteJuntos), ArteJuntos is a bilingual art and culture-based family literacy program that introduces low-income, educationally at-risk preschool children and their families to the KMA. Using works of art in KMA’s exhibitions, the program connects parents and their children (ages 3-5) to activities that support children’s emergent literacies—observation, oral and receptive language, and critical thinking skills. How did we approach this study? RK
DATE:
TEAM MEMBERS: Stephanie Downey Cathy Sigmond
resource project Media and Technology
This will be a unique video game based on the writings the American author Henry David Thoreau at Walden Pond. Designed and directed by game designer Tracy Fullerton, Walden, a game, will simulate the experiment in living made by Thoreau at Walden Pond in 1845-47, allowing players to walk in his virtual footsteps, attend to the tasks of living a self-reliant existence, discover in the beauty of a virtual landscape the ideas and writings of this unique philosopher, and cultivate through the game play their own thoughts and responses to the concepts discovered there. The humanities content of the game will focus on an interactive translation of Thoreau’s writings and will also include references to the historical context of those writings. The game takes place in the environment of 1845 New England, when new technologies such as the railroad, the telegraph were first being seen and were part of the changes to pace of life that Thoreau so articulately resisted in critiques of society.
DATE: -
TEAM MEMBERS: Tracy Fullerton
resource research Informal/Formal Connections
Current science education policy advocates for engaging students in scientific practices of inquiry as the best way for students to learn science. McConney et al.’s analysis of PISA data unexpectedly found a negative correlation between frequency of inquiry-based instruction and high levels of student scientific literacy. The analysis confirmed a positive correlation between frequency of inquiry-based instruction and high levels of interest and of engagement in science.
DATE:
resource research Media and Technology
As infographics and other visual forms of data become increasingly common, many educators wonder how to best integrate them into learning activities. Polman and Gebre interviewed 10 experts in science representation to understand common practices they used for selecting and interpreting infographics. The authors build on study results to generate guidelines for educators' use of infographics.
DATE:
TEAM MEMBERS: Kerri Wingert
resource research Media and Technology
Polman, Newman, Saul, and Farrar reflect on six years of work with a science journalism program for teens that fosters a version of science literacy centered on developing fluency in the application and use of science in personal life.
DATE:
TEAM MEMBERS: Melissa Ballard
resource research Informal/Formal Connections
Researchers examined how conducting an authentic science investigation in a bilingual classroom and weaving in discussions about the nature and culture of science affected students. They found that this process supported students’ growth in understanding of the scientific enterprise and made the culture of science more approachable.
DATE:
TEAM MEMBERS: Anita Krishnamurthi
resource project Public Programs
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
DATE: -
TEAM MEMBERS: Ann McMahon
resource project Public Programs
Based on the number of visitors annually, zoos and aquariums are among the most popular venues for informal STEM learning in the United States and the United Kingdom. Most research into the impacts of informal STEM learning experiences at zoos and aquariums has focused on short-term changes in knowledge, attitudes and behaviors. This Science Learning+ project will identify the opportunities for and barriers to researching the long-term impacts of informal STEM learning experiences at zoos and aquariums. The project will address the following overarching research question: What are and how do we measure the long-term impacts of an informal STEM learning experience at a zoo and aquarium? While previous research has documented notable results, understanding the long-term impacts of zoo and aquarium learning experiences will provide a deeper and more nuanced understanding of the impact of these programs on STEM knowledge, skills and application. This study will use a participatory process to identify: (1) the range of potential long-term impacts of informal science learning experiences at zoos and aquariums; (2) particular activities that foster these impacts; and (3) opportunities for and barriers to measuring those impacts. First, an in-depth literature review will document previous research efforts to date within the zoo and aquarium community. Second, a series of consultative workshops (both in-person and online) will gather ideas and input from practitioners, researchers, and other stakeholders in zoo and aquarium education. The consultative workshops will focus on two questions in particular: (1) What are the different types and characteristics of informal science learning experiences that take place at zoos and aquariums? and (2) What are the long-term impacts zoos and aquariums are aiming to have on visitors in relation to knowledge, attitudes, skills and behaviors/actions? Finally, visitor surveys at zoos and aquariums in the US and UK will be conducted to gather input on what visitors believe are the long-term impacts of an informal STEM learning opportunity at a zoo or aquarium. The data gathered through all of these activities will inform the design of a five-year, mixed-methods study to investigate long-term impacts and associated indicators of an informal STEM learning experience at a zoo or aquarium. One of the aims of the five-year study will be to test instruments that could eventually be used by the global zoo and aquarium community to measure the long-term impacts of informal STEM learning programs. Designing tools to better understand the long-term impacts of informal STEM learning at zoos and aquariums will contribute to our ability to measure STEM learning outcomes. Additional benefits include improved science literacy and STEM skills amongst visitors over time and an understanding of how education programs contribute to wildlife conservation worldwide.
DATE: -
TEAM MEMBERS: Brian Johnson Stanford University Lancaster University Sarah Thomas Nicole Ardoin Murray Saunders
resource project Public Programs
Citizen involvement in science is part of a long history of the role of the amateur in science. Research in the USA and UK suggests that citizen science has a powerful potential to support participation in and the learning of science. Increasing research has sought to explore and measure the development of 'science literacy', science identity and learning outcomes through citizen science. The scale, focus, and organization of projects has been demonstrated to influence who participates in them, the scientific achievements, and what volunteers learn. This Science Learning+ project seeks to build upon and extend the existing work in three significant ways: (1) extend the range of contexts through which existing frameworks and instruments are used and evaluated, in particular, projects that involve families, (2) examine not only the learning outcomes of citizen science projects, but also the processes through which that learning occurs and its contribution to the building of science capital. This will help in establishing better understanding of not only what is learnt but also how learning occurs; (3) develop a better theory of informal science learning through citizen science. This will advance knowledge in informal science learning.
DATE:
TEAM MEMBERS: Richard Edwards Katherine Mathieson Rick Bonney Tina Phillips
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
DATE: -