Skip to main content

Community Repository Search Results

resource project Public Programs
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.
DATE: -
TEAM MEMBERS: Julie Yu
resource project Public Programs
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
DATE: -
TEAM MEMBERS: Robin Meisner David Sobel Susan Letourneau Jessica Neuwirth Valerie Haggerty-Silva Chris Sancomb Camellia Sanford-Dolly Claire Quimby
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource project Media and Technology
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:

Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.

This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
DATE: -
TEAM MEMBERS: Roger Launius
resource project Media and Technology
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
DATE: -
TEAM MEMBERS: Alan Winick
resource project Public Programs
The Long Island Children's Museum, in partnership with the Westbury School District, will expand its Westbury STEM Partnership program to provide additional professional development and ongoing support for teachers, and experiential STEM (science, technology, engineering, and math) learning opportunities for both first- and second-grade students in their classrooms and at the museum. The program will support inquiry-based, hands-on STEM learning in a high-need school district neighboring the museum, provide professional development to teachers, bring students to the museum to experience exhibits and programs, and make the museum's education staff available to educators for mentoring and content support as they integrate new teaching strategies into their classrooms. The project will promote improved STEM teaching and student learning by supporting teachers in integrating inquiry-based teaching strategies, enriching experiential learning for students both in and out of the classroom, and strengthening local school and community partnerships.
DATE: -
TEAM MEMBERS: Aimee Terzulli
resource project Public Programs
Science Museum of Minnesota will create three live theater productions highlighting current laboratory and field research studies of science issues with strong topical relevance to families with school-age children, school groups, and adult lifelong learners. Shows will align with the appropriate grade levels of the Minnesota Science Education Standards in three age levels: early elementary (grades 1–3), upper elementary and middle school (grades 4–8), and high school students and adult learners. The shows will be performed in daily rotation at the museum to entertain, inform, and challenge visitors to reflect on current science issues. Theater staff will disseminate the shows through various national conferences, websites, and professional associations, enabling colleagues nationwide to download the scripts free of charge and present topical science issues at their own museums.
DATE: -
TEAM MEMBERS: Stephanie Long
resource project Public Programs
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Public Programs
This initiative is a collaboration of the University of Massachusetts Amherst, the EcoTarium science museum in Worcester, MA, other scientists and teachers at Clark University in Massachusetts and at Loyola Marymount University in Los Angeles, along with six other museums in New England and California. The project seeks to develop and study a model that would integrate the science research on urban systems into science museum exhibits and programs, starting in this phase in a new "City Science" exhibit space at the EcoTarium. The goal is to learn how to assist citizens in decision-making and shaping a sustainable future for their communities. The work builds on the NSF/SBS-funded Urban Long-term Research Area Exploratory (ULTRA-Ex) network, one of a set of awards by NSF/SBS and NSF/BIO in the area of urban ecology. The exhibit (with four sections: neighborhood design; land use and land cover; urban biodiversity; urban heat island effect) will include activities related to "alternative futures" of cities, will be designed to be updated as new results from this research are produced and also to allow for visitors to respond to survey questions about their city environment that will be used by the researchers. Deliverables will also include an integration of the prototype exhibits with an NSF-funded K-12 urban ecology curriculum (co-PI from Loyola Marymount University), which has already been done with nature centers and would now expand into science museums. The significance of this work includes the growing importance of new research on human/ecology interaction in cities coupled with applications of this research to Public Participation in Science Research (PPSR) and local decisions and choices. It is driven by the future vision of the cities in which the target audience(s) is located. The work in Worcester will focus on reaching underserved audiences, which characterizes much of the city of Worcester, and will include partnerships with local schools and community groups.
DATE: -
TEAM MEMBERS: Robert Ryan Eric Strauss Colin Polsky Alexander Goldowsky Paige Warren Betsy Loring
resource project Public Programs
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
DATE: -
resource project Media and Technology
The Maryland Science Center, in partnership with SK Films, Inc. received NSF funding to produce a large format, 2D/3D film and multi-component educational materials and activities on the annual migration of monarch butterflies, their life cycle, the web of life at select sites where they land, and the citizen science efforts that led to the monarch migration discovery. Project goals are to 1) raise audience understanding of the nature of scientific investigation and the open-ended nature of the scientific process, 2) enhance and extend citizen science programs to new audiences, and 3) create better awareness of monarch biology, insect ecology and the importance of habitat. Innovation/Strategic Impact: The film has been released in both 3D and 2D 15/70 format. RMC Research Corporation has conducted evaluation of the project, both formatively and summatively, including a study of the comparable strengths of the 2D and 3D versions of the film. RMC has conducting formative evaluation and is currently conducting summative evaluation to assess the success of project materials in communicating science and achieving the project's learning goals. Collaboration: This project employs a collaborative model of partnerships between the project team and the National Science Teachers Association (NSTA), the University of Minnesota's Monarchs in the Classroom and Monarch Watch. Project advisors represent world-renown monarch butterfly research scientists and educators, including Dr. Karen Oberhauser, named a "Champion of Change" by President Obama in June 2013, and Dr. Chip Taylor, founder and director of Monarch Watch at the University of Kansas.
DATE: -
TEAM MEMBERS: Jim O'Leary
resource project Public Programs
ENERGY-NET (Energy, Environment and Society Learning Network) brings together the Carnegie Museum of Natural History (CMNH) with the learning science and geoscience research strengths at the University of Pittsburgh to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. ENERGY-NET builds upon a long-established teen docent program at CMNH and forms Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.
DATE: -
TEAM MEMBERS: Carnegie-Mellon University Mary Ann Steiner Emily Elliot Kevin Crowley University of Pittsburgh and Carnegie Museum of Natural History