Skip to main content

Community Repository Search Results

resource project Public Programs
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
DATE: -
TEAM MEMBERS: Robin Meisner David Sobel Susan Letourneau Jessica Neuwirth Valerie Haggerty-Silva Chris Sancomb Camellia Sanford-Dolly Claire Quimby
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource project Public Programs
A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
DATE: -
TEAM MEMBERS: Douglas Arion
resource project Exhibitions
This pathways project will study how audiences in public spaces, in this case those in a museum setting, relate to and make sense of large data displays. The project is preliminary to development of a traveling, hands-on exhibition enabling users to create and utilize representations of big data displays such as maps and charts. As the test case, the project will use science maps that provide an overview of science generally and specific areas of STEM, charting and exploring the history and future of science and technology. The data collection portion of the project will take place at the New York Hall of Science, the Marian Koshland Science Museum, COSI in Columbus, Ohio, and WonderLab Museum in Bloomington, Indiana. The project will create a foundation for the design of museum exhibits and educational programs that teach museum visitors how to explore, engage and make better sense of big data. The project is potentially transformative because big data is becoming ubiquitous and making sense out of large data displays is necessary in order to understand big data sets.
DATE: -
TEAM MEMBERS: Katy Borner Joe E Heimlich Adam Maltese
resource project Media and Technology
This Connecting Researchers to Public Audiences project plans to create a multimedia website, Into the Rift, a virtual journey to Lake Tanganyika in East Africa, along with teaching resources and a dissemination campaign. The content will focus on the high freshwater diversity of the 2nd largest lake in the world; the diverse array of cichlid fish in the lake; and the effects of overharvesting and global warming on the lake's ecosystem. The project's intended learning outcomes are that viewers will have enhanced awareness and understanding of: 1) the ecosystem-scale processes that support life in lakes; 2) the importance of intact natural ecosystems for the well-being of human societies; 3) the techniques that scientists use to learn more about the ecosystem-scale movement of matter and energy; and 4) potential career paths in STEM fields. These learning outcomes correlate to the current and proposed science standards, which provide a structure for content development and outcomes assessment. The project will be designed by the collaboration of an ecologist (the PI Dr. Yvonne Vadeboncoeur), education specialist (co-PI Dr. Lisa Kenyon), communication specialist (co-PI Dr. Elliot Gaines) all from Wright State University, and a media lab (Habitat Seven), and informed by formative evaluation conducted by Edu, Inc. The website, hosted by a guide from East Africa along with the PI, will be presented in three languages (Spanish, French, and Swahili) in addition to English. Edu, Inc. will also conduct a summative evaluation of all the components of the project with respect to the four intended learning outcomes and their related concepts as well as analyze the outcomes of the dissemination strategies. This CRPA uses internet technologies to make abstract scientific concepts and a largely inaccessible research location available to a wide audience. The project intends to inform and engage the audience with an aggressive use of social media in addition to the website. Into the Rift will provide material for both the lay audience and classrooms, including access to authentic scientific data to compare the Lake Tanganyika data to environmental data collected from the U.S. Great Lakes. Additional collaborations with established organizations, including Crossing Boundaries, Conservation Bridge and Community Bridges, will expand the reach and impact of the project to diverse audiences. The multi-lingual approach extends the reach to potentially an even greater audience both within and outside the U.S.
DATE: -
TEAM MEMBERS: Yvonne Vadeboncoeur Elliot Gaines Lisa Kenyon Jennifer Moslemi
resource project Exhibitions
This CRPA project is about research on climate change impacts in the Amazonian rain forest and about motivating youth to consider science as a career objective. The project is an exhibit in Biosphere 2 in Arizona wherein a rain forest is maintained and will be used to augment the exhibit of large photos of scientists doing research. Particular attention will be paid to female scientists to motivate young girls. Biosphere 2 and the Girl Scout Council of Southern Arizona will collaborate to attract girls through free admission days to Biosphere 2. These large photos will be equipped with sound and video so that as a visitor approaches the photo, the sounds of the forest as well as the researcher(s) will be heard. At this point the researcher, in the photograph, will begin a monologue with the visitor explaining what scientists are investigating and who the other workers are. In this monologue, the researcher will explain what they are doing specifically, why they are investigating this subject, and what they plan to derive as a scientific result. The exhibit will consist of fifty very large photographs (3x5 feet) with sound access via smart phones and headsets. In addition, there will be hands on equipment and docents for questions and discussion. The venue receives about 100,000 visitors per year consisting mainly of families, tourists, and clubs. Through this exhibit, the researchers intend to motivate youth to develop interests in STEM topics. Girls are the main target audience. For families and tourists, the exhibit communicates the message of how science is being used to determine the effect of climate change on rain forests and how that would affect other aspects of weather and the global environment.
DATE: -
TEAM MEMBERS: Scott Saleska Bruce Johnson Joost van Haren Jennifer Fields
resource project Media and Technology
This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
DATE: -
TEAM MEMBERS: Deborah Kilb
resource project Media and Technology
This Connecting Researchers and Public Audiences project will engage the public in understanding how species are born. The project builds on the PI's NSF-funded research on speciation and signal diversification in Monarcha Flycatchers of the Solomon Islands (NSF CAREER, #1137624). Project deliverables include a one-hour television program, website, and the use of social media. The team proposes to film an engaging tale that weaves historical research with modern molecular techniques to communicate to the public how new species are born. It will also illustrate the process of science and the people behind the research. The potential national audience is large, with a particular effort to reach 18-49 year olds. The program will be nationally distributed by one of the major television or cable channels. The website will provide a video gallery of short videos and photos, a blog from the field, and an in-depth learning section with new research about speciation. Evaluation of the project, conducted by Education Northwest, will focus on changes in audience knowledge and interest about speciation. The findings of the summative evaluation will be made available online at InformalScience.org.
DATE: -
TEAM MEMBERS: J. Albert Uy Nathan Dappen Neil Losin
resource project Media and Technology
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
DATE: -
TEAM MEMBERS: Richard Kron Suzanne Gurton Daniel Reichart Sue Ann Heatherly
resource project Media and Technology
In Defense of Food (IDOF) is a media and outreach project based on Michael Pollan's best-selling book of the same title. Through the lens of food science, IDOF is designed to engage diverse audiences in learning about: (1) how science research is conducted, (2) how research findings are used in media, marketing, and public policy, and (3) how to apply food science research in everyday life. IDOF will be created by Kikim Media, an independent production company, broadcast and distributed by PBS and supported by an extensive outreach campaign and interactive website. The project's educational materials will be developed, in part, by the Teacher's College at Columbia University's Center for Food and Nutrition, with dissemination supported by the Coalition for Science After School and by Tufts University's Healthy Kids Out of School initiative, which involves nine of the leading out of school time (OST) organizations, such as Girl Scouts USA, and the National Urban League. The project advisory committee includes highly respected researchers in food, nutrition, and health. IDOF will use an integrated strategy of learning resources, combining a television documentary with online/social media, community outreach, and youth activities. Knight Williams Research Communications will conduct formative and summative evaluation of all major components of the project. The results will advance the informal science community's understanding of how the combination of a documentary with outreach, website/social media, and afterschool activities impacts motivation and learning. The evaluation study will pay special attention to the degree to which participation in the community events, social media/website, and afterschool activities motivates deeper or extended engagement with the subject. Project evaluation results and educational resources will be widely disseminated to the informal science community. IDOF includes a two-hour documentary film that will be produced in both English and Spanish; a community-level outreach campaign focused on reaching underserved audiences who may not watch public television; a set of activities for use in afterschool programs, youth programs and schools; and an interactive and content-rich website with tightly integrated social media tools. IDOF will be nationally broadcast by PBS; the Spanish-language version of IDOF will be broadcast by Vme Television. The ambitious IDOF educational materials and outreach campaign, combined with interactive web and social media, will reach large and diverse audiences. The intended impacts on audiences include increased knowledge and understanding of the scientific process by learning what food scientists do, what techniques they use, and how scientists arrive at their conclusions; the development of critical thinking skills audiences can use when evaluating messages about food and nutrition in media and advertising and when making decisions about what food to buy and eat; and becoming active learners and consumers regarding food. Evaluation results will be widely disseminated to science media producers and the informal science community via professional publications and presentations at conferences. The ultimate value of the In Defense of Food documentary and learning initiative will be to enhance public understanding of the crucial importance of science in people's everyday lives and in shaping dozens of daily decisions.
DATE: -
TEAM MEMBERS: Michael Schwarz
resource project Media and Technology
The University of Southern California (USC) will build on prior work to test a robust model for assessing player content engagement and social interactions within an augmented reality game (ARG). In partnership with No Mimes Media, USC will use machine learning algorithms to make automated player inferences to customize game play. The content focus of the game will span a range of STEM disciplines, with a special emphasis on earth science content and scientific investigation & experimentation reasoning. High school youth from underserved communities in Los Angeles will be recruited to participate in the endeavor. This pathways project will use various "rabbit hole" techniques to attract freshmen and sophomore students from partner charter schools to the online game. The rabbit hole strategies may include cryptic posters, inquisitive signs, & SQR codes strategically placed in plain and open view of the target group. The game will be fully accessible to the target group online. During the ARG experience, youth players will encounter STEM concepts and scientific problems. Antagonistic characters will promulgate scientific misconceptions and nonscientific reasoning and challenge players to employ their scientific knowledge and skills to level-up, gain badges, and move through the game. As game play persists, machine learning algorithms will gather data on the players learning competencies and social interactions within the game. These data will be aggregated and analyzed to assess learning and interactions within the ARG environment. Additional analyses will be conducted by the mixed methods approach the external evaluation group, CRESST, will employ for the project formative and summative evaluations. Approximately 300 youth, within the target grade levels, are expected to participate in the gaming experience. However, given that access to the game and assessment tools will expand beyond the target group, the potential reach of the project could be much greater. Further, the stated aim of the project is not only to produce a scalable model for broad implementation but it also endeavors to provide puppetmasters with research and assessment tools to create more individualized experiences and improved learning outcomes for players within ARG environments.
DATE: -
TEAM MEMBERS: Yu-Han Chang Jihie Kim Rajiv Maheswaran
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski