Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource project Professional Development, Conferences, and Networks
Physics awards smaller percentages of PhDs to women (19%) and underrepresented ethnic and racial minorities (7%) than any other field in the sciences, and underrepresentation is especially pronounced at selective universities. As global competition for scientific talent heats up and US demographics shift, cultivating a robust domestic workforce is critical to US technological leadership. We seek to build on the successful American Physical Society Bridge Program (apsbridgeprogram.org) by transforming physics graduate education to fully support the inclusion of women and ethnic and racial minorities. Our vision is to create a national network of disciplinary colleagues, expert researchers, and representatives from professional associations who will develop and build evidence-based knowledge of effective practices for recruitment, admissions, and retention of women and underrepresented ethnic and racial minorities. This pilot project will include six large, highly selective physics graduate programs to demonstrate and map out a plan for a discipline-wide effort. The pilot focuses on improving admissions practices, because this strategy promises immediate and measurable impact backed by extant research. The pilot will also take exploratory steps to develop scalable recruitment and retention strategies. To refine interventions, we will conduct research to identify and understand demographically-based loss points of students in graduate physics programs and to understand how network participation facilitates change. The project will also establish connections with other STEM disciplines, beginning with mathematics and chemistry, to explore expanding these efforts.

This project is grounded in research on diversity in graduate education, organizational learning, and the resources of networks to catalyze cultural change. The project team includes expertise in institutional change, graduate admissions, student success, diverse and inclusive environments, and social science research. The pilot advances a novel research agenda on inclusion in STEM by addressing recruitment, admissions, and retention in physics graduate education as interconnected challenges of faculty learning, professional networks, and disciplinary cultural change. Physics graduate programs will report admissions data and common metrics, and will document changes resulting from project activities. Faculty will be trained on holistic admissions and diversity in selection processes, and be guided in the use of inclusive admissions practices. An external evaluator will examine project effectiveness and readiness for scaling to an Alliance phase project.
DATE: -
TEAM MEMBERS: Monica Plisch Theodore Hodapp Julie Posselt Geraldine Cochran Casey Miller
resource research Professional Development, Conferences, and Networks
This is a recording of a NISE Network online brown-bag conversation held in December 2014 about the International Year of Light. In 2013, the United Nations proclaimed 2015 as the International Year of Light (IYL). More than 100 organizations from more than 85 countries are participating in IYL. During this conversation we discussed scientific organizations that would make great partners for IYL events, shared light-related activities and videos developed by the NISE Network, and talked about the science behind some of those activities.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource research Public Programs
The NISE Network has developed numerous activities and programs suggestions for the International Year of Light and Light-Based Technologies (IYL 2015). The International Year of Light and Light-Based Technologies (IYL 2015) is a global initiative that will highlight to the citizens of the world the importance of light and optical technologies in their lives, for their futures, and for the development of society. It is an unique opportunity to inspire, educate, and connect on a global scale.
DATE:
TEAM MEMBERS: Catherine McCarthy
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS: New Jersey Academy for Aquatic Sciences Barbara Kelly
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource research Public Programs
These posters about the Nanoscale Informal Science Education Network were presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS: Museum of Science, Boston Vrylena Olney
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource evaluation Professional Development, Conferences, and Networks
This professional development event was held on November 6 and 7, 2005 at the Museum of Science, Boston, under the direction of the Museum’s Director for Strategic Projects, Carol Lynn Alpert. This event was sponsored by the Center for High-rate Nanomanufacturing NSF Nanoscale Science and Engineering Center (NSEC) headquartered at Northeastern University, the University of Massachusetts – Lowell, and by the “Science of Nanoscale Systems and their Device Applications” NSF NSEC headquartered at Harvard University. The Symposium was intended to provide educators from middle schools, high schools
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert Barbara Flagg Elissa Chin Christine Reich
resource evaluation Professional Development, Conferences, and Networks
The Museum of Science partnered with the Center for High-rate Nanomanufacturing to create a sequence of professional development experiences in science communication and hands-on learning for graduate students and post-docs. The Sharing Science Workshops were intended to help graduate students who work with the CHN program to improve their abilities to present their research to a variety of scientific and nonscientific audiences. The sequence included a half-day "Sharing Science" workshop, a half-day guided "Practicum" with museum visitors, and optional participation in NanoDays events at MOS
DATE:
TEAM MEMBERS: University of Massachusetts Carol Lynn Alpert
resource project Afterschool Programs
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:


Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders


To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS: Missouri AfterSchool Network Jeff Buehler
resource project Public Programs
This Nanoscale Science and Engineering Center (NSEC) is a collaboration among Harvard University, the Massachusetts Institute of Technology, the University of California—Santa Barbara, and the Museum of Science—Boston with participation by Delft University of Technology (Netherlands), the University of Basel (Switzerland), the University of Tokyo (Japan), and the Brookhaven, Oak Ridge, and the Sandia National Laboratories. The NSEC combines "top down" and "bottom up" approaches to construct novel electronic and magnetic devices with nanoscale sizes and understand their behavior, including quantum phenomena. Through a close integration of research, education, and public outreach, the Center encourages and promotes the training of a diverse group of people to be leaders in this new interdisciplinary field.
DATE: -
TEAM MEMBERS: Robert Westervelt Bertrand Halperin