Skip to main content

Community Repository Search Results

resource project Media and Technology
For both parents and educators, monitoring and adjusting their behaviors to ensure that children develop appropriate prosocial and learning behaviors is a complex balance between nurturance and limit setting. When these interactions are strained, negative or coercive cycles may emerge that delay appropriate development and exacerbate existing impairment. To disrupt the development of coercive cycles, adults must have the ability to accurately assess the quality of their interactions with children and integrate this information into personal change. Approaches to measuring these types of interactions will inform what we know about the mechanisms of child social, emotional, and learning development in STEM learning settings, and enable the creation of adaptive interventions for those moments when support is most needed. This project envisions a closed-loop intervention framework to promote a supportive and interactive environment around children. Smart wearables will sense interaction and responses between the children and their parents or educators, using embedded machine learning technology to recognize supportive behaviors. The perceived behaviors will be sent to a cloud server where adaptive interaction strategies will be identified from either online psychological consultation or artificial intelligence. These interaction strategies will then be provided to the parents and educators in the form of guidance cues to promote a supportive STEM learning environment around the children.

This planning project aims to understand the barriers and critical problems in the implementation of smart technology and psychological strategies to support adult-child interactions in STEM learning settings. The work will proceed by convening key stakeholders (parent organizations, formal educational institutions, and informal educational institutions) in a series of iterative discussions to produce a set of adult-child behavioral targets that are essential to children’s development of social, emotional, and learning skills. Further discussions will then identify mechanisms to enhance these behaviors, and reduce competing, less effective approaches. Qualitative thematic analysis of the discussions will be used to capture these behaviors and mechanisms. Then technologies will be developed to measure, provide feedback on, and improve these behaviors. These devices will be piloted with adult-child dyads. Audiovisual data collected by the devices will be human coded as well as processed by algorithms to vet the technological capacity of the devices to detect and respond to targeted behaviors. A series of debriefing interviews and surveys with adult-child dyads will be used to determine the feasibility, acceptability, and utility of the devices. The collected preliminary data will support the forming of critical technological and social science research questions that co-inform one another: questions about the social engagement between adults and children will drive the technical research, and what can be discovered via the technological research will open up new questions that can be posed about social engagement between children and adults. Adult-child interactions are key social factors that integrate to produce student social, emotional, and academic outcomes. Within our informal educational communities, our formal educational communities, and our familial communities it is essential to find the best mechanisms for measuring, providing feedback, and improving these interactions. This work thus seeks to advance a new approach to, and evidence-based understanding of, the development of STEM learning. This Smart and Connected Communities project is also supported by the Advancing Informal STEM Learning program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Ou Bai Kellina Lupas William Pelham
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Informal/Formal Connections
HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST), the Advancing Informal STEM Learning (AISL), and the Discovery Research PreK-12 (DRK-12) programs. These programs which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' and general public knowledge and interest in science, technology, engineering, and mathematics (STEM).
DATE: -
TEAM MEMBERS: Cynthia Trawick John Haynes Triscia Hendrickson Terry Mills
resource project Public Programs
Research suggests that when both science, technology, engineering, and mathematics (STEM) education and social-emotional development (SED) are supported in afterschool, summer, and other informal settings, young people can better develop skills for the future such as leadership, decision-making, and relationship-building so they could have successful careers/participation in STEM. However, researchers and practitioners working in the out-of-school time (OST) sector often do so without connections across these fields. The appeal for more integration of STEM and SED in OST program delivery and data collection has remained abstract and aspirational. This Literature Review and Synthesis project is the next step needed to move the OST field toward the intentional, explicit, and evidence-based integration of STEM and SED in research and practice. The project will create shared understanding necessary to improve program content, staff training, and evaluation. This synthesis will support future research on unified STEM+SED that can lead to more effective, equitable, and developmentally appropriate programming. Improved programming will contribute to talent development, address STEM workforce needs, and promote socioeconomic mobility to benefit children, youth, educators, and society. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This project will systematically examine what domains and skills at the interface of STEM+SED are most researched among K-12 youth in informal STEM learning environments, compared to formal STEM educational environments. The team will further explore how gender, race, and other intersectional forms of equity can be added to the STEM+SED equation. The project team will search and appraise empirical and gray literature (2001-2020) to identify the most commonly researched domains and skills at the interface of STEM+SED in informal environments serving K-12 youth. The review and synthesis process will include four steps: search, appraisal, synthesis, and analysis. The search will begin with STEM+SED skills in four foundational domains (agency, belonging, engagement, and reflection) identified previously with experts from the fields of STEM and SED. The search will include all existing, eligible references from formal K-12 settings to contrast commonly studied domains and skills (e.g., perseverance, self-regulation, teamwork, complex problem-solving, self-awareness) in formal versus informal learning environments. The study approach will then compare these domains and skills by the demographics variables noted above. Following the creation of a strong catalog of evidence, information will be synthesized using three “pillars” for building coherence in STEM+SED integration: phenomenon (the knowing), implementation (the doing) and assessment (the result). These pillars will be used to organize and critically analyze the literature. Building conceptual coherence through a systematic review and synthesis of literature from the fields of STEM and SED will lead to greater understanding of STEM+SED in OST practice, highlight the most important content and skills to learn in informal environments, and identify when and how youth should learn specific content and skills at the interface of STEM+SED. Applying coherence to the integration of STEM+SED ensures that the principles and practices are layered carefully, in ways that avoid superficial checklists or duplication of effort and build meaningfully upon young people’s knowledge and skills. The long-term goal is to broker connections and alignment of STEM+SED across schools and OST programs. Recommendations and a roadmap to guide equitable, effective STEM+SED research, practice, and policy will result from this research.
DATE: -
TEAM MEMBERS: Gil Noam Patricia Allen
resource project Public Programs
Black Girls Create (BGC) is a program that uses maker pedagogy, social history (i.e., Black women’s contributions in STEM), culturally responsive pedagogy, and mentoring to engage Black girls in STEM. For the project, culturally responsive making is operationally defined as the use of cultural knowledge and maker technologies to create, design, and produce artifacts that are related to a particular concept, theme, or person. The project will conduct a feasibility research study that investigates how engagement in BGC affects participants' STEM interest, STEM confidence, and racial and gender identities. In the project, participants will discover how Black women have made an impact in STEM fields and will learn how to digitally create cultural artifacts/wearable art related to their discoveries. Approximately 120 middle school girls in grades 6-8 (8 groups of 15 participants each) from underserved neighborhoods will be recruited for participation in this two-year study. Each group will meet for 3 hours per week over an 8-week period. Instructional materials from this research will be made freely available online so that they can be adapted and used at other formal and informal educational institutions that seek to garner interest and access to STEM learning for Black girls and women.

A pre- and post-test, quasi-experimental design will be used to research the program’s influence on participants’ self-efficacy, racial identity, and gender identity. Lagged regression models that control for students’ age, race/ethnicity, and pre-survey scores will be used to examine growth in each of the four outcomes. Once all of the participants in the groups have completed BGC, data from all groups will be combined to increase power and thereby detect statistically meaningful differences in pre- and post-survey scores. In addition, variables representing attendance and program engagement will be entered into the model to examine whether students who are highly engaged in BGC programming exhibit more growth in the four outcomes. Qualitative data will be derived from students' journal entries as well as focus group interviews. Weekly journals will be used to gather data about the context and experiences of participants as they unfold throughout the program. Semi-structured focus groups will center around the usefulness of skills and knowledge gained from the program activities, significant experiences with peers and program staff, the opportunity to learn about Black women STEM progenitors, and learning how to make digitally fabricated artifacts. NVIVO, a computer software program, will be used as a tool to support the analysis of the rich, text-based information resulting from the journals and focus group narratives.

This feasibilty research project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: LaShawnda Lindsay-Dennis Kristin Searle Jaycee Holmes
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource research Professional Development, Conferences, and Networks
As science communication programs grow worldwide, effective evaluation and assessment metrics lag. While there is no consensus on evaluation protocols specifically for science communication training, there is agreement on elements of effective training: listening, empathy, and knowing your audience — core tenets of improvisation. We designed an evaluation protocol, tested over three years, based on validated and newly developed scales for an improvisation-based communication training at the Alan Alda Center for Communicating Science. Initial results suggest that ‘knowing your audience’ should
DATE:
TEAM MEMBERS: Christine O’Connell Merryn McKinnon Jordan Labouff
resource research Informal/Formal Connections
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS: Yuko Ikkatai Azusa Minamizaki Kei Kano Atsushi Inoue Euan McKay Hiromi M. Yokoyama
resource research Media and Technology
Student engagement is an important predictor of choosing science-related careers and establishing a scientifically literate society: and, worryingly, it is on the decline internationally. Conceptions of science are strongly affected by school experience, so one strategy is to bring successful science communication strategies to the classroom. Through a project creating short science films on mobile devices, students' engagement greatly increased through collaborative learning and the storytelling process. Teachers were also able to achieve cross-curricular goals between science, technology
DATE:
TEAM MEMBERS: Kaitlyn Martin Lloyd Davis Susan Sandretto
resource research Public Programs
An independent evaluator and a group of investigators from three AISL projects focused on public engagement with science (PES) collaborated on a paper about research-practice partnerships for PES. This two-page brief summarizes their key points.
DATE:
TEAM MEMBERS: Karen Peterman John Besley Sue Allen Kathy Fallon Lambert Nalini Nadkarni Mark Rosin Caitlin Weber Marissa Weiss Jen Wong
resource project Informal/Formal Connections
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.

The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.

This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.

Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
DATE: -
TEAM MEMBERS: Maria Ong Apriel Hodari
resource research Informal/Formal Connections
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
DATE:
TEAM MEMBERS: Maria Ong Janet Smith Lily Ko