Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Ibrahim Dahlstrom-Hakki Jamie Larsen Adam Lalor
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource research Media and Technology
The authors present an exploratory study of Black middle school boys who play digital games. The study was conducted through observations and interviews with Black American middle school boys about digital games as an informal learning experience. The first goal of the study is to understand the cultural context that Black students from economically disadvantaged inner-city neighborhoods bring to playing digital games. The second goal of the study is to examine how this cultural context affects the learning opportunities with games. Third, the authors examine how differences in game play are
DATE:
TEAM MEMBERS: Betsy James DiSalvo Kevin Crowley Roy Norwood
resource project Media and Technology
The project includes a simulation based Family Learning Program to be administered through the International Challenger Learning Center (CLC) network. The goal is to develop families' skills in learning as a team through science, math and technology (SMT) in an environment where parents and children are co-travelers in a world of ideas. PACCT is disseminated through ten of the Challenger Learning Centers reaching 22,000 families nationwide. Many of these activities are completed in the home at no cost to the anticipated 12,500 participating families. Through this network of centers, all types of communities are served in many states. The activities include Sim-U-Voyages, where family teams work at home; Sim-U-Challenges, where families create a physical model responding to a challenge; Sim-U-Visits, where families hear from scientists and work as scientists in a team solving a problem; and Sim-U-Ventures, which result in flying a mission. Cost sharing is 8%.
DATE: -
TEAM MEMBERS: Linda Morris Jan Anstatt
resource project Media and Technology
This project will create and study Kids' Survey Network as an exemplar of a new, replicable model of informal learning called an apprenticeship network. The project will develop the data literacy of future learners, workers, and citizens by empowering participants aged 11-14 to develop survey projects to address their own questions about local community issues. Research on the project will illuminate core questions relating to the design and potential impact of the apprenticeship network, including social and motivational dynamics, community and technology-based scaffolding, educational game genres, and conditions of effective use. The project deliverables include four components: (1) a web-based community of practice; (2) a common set of tools; (3) a suite of learning games and tutorials; and (4) structures for tiered, team-based advancement. Tertl Studios LLC and MIT's Education Arcade will develop the learning games, SRI International will conduct the evaluation, leading regional and national informal education organizations will provide test bed sites, and professional survey research organizations will provide technical and volunteer assistance.
DATE: -
TEAM MEMBERS: Elizabeth Rowe Diana Nunnaley Christopher Hancock
resource project Media and Technology
The University of Central Florida Media Convergence Laboratory, New York Hall of Science, and the Queens Museum of Art are developing a 3-D, multi-user virtual environment (MUVE) of the 1964/65 New York World's Fair. Virtual fairgoers of all ages will be immersed in an accurately modeled historical world with more than 140 pavilions on science, technology, engineering, and mathematics (STEM) disciplines and an array arts and humanities exhibits. The virtual world can be freely explored through self-designed avatars, and avatar-led guided tours. Discovery Points throughout the virtual environment will afford opportunities for in-depth engagement in STEM topics that will empower participants to explore the broader consequences of technological innovations. The centerpiece of user-generated content is FutureFair, an area where online users can create and share their personal visions of the future. Interconnections reaches beyond its virtual component through its partnership with the New York Hall of Science and the Queens Museum of Art, which are both situated in the heart of Queens in Flushing Meadows Corona Park, a 1255 acre urban park that hosted the 1939/1940 and 1964/65 Fairs. The New York Hall of Science will provide face-to-face youth workshops that employ problem-based learning. Single and multi-session programs will connect adolescents to STEM content presented at the Fair through the virtual world environment. Participants will create multimedia content for inclusion in the project's website. Multi-touch interactive stations at the Queens Museum of Art will enhance their NY World's Fair Exhibit Hall by empowering visitors to individually or collectively explore various STEM topics and the symbiotic relationships between STEM and the humanities, and by serving as an attractor for visitors to the online Fair exploration. The project will be completed in time for the 50th Anniversary celebration of the 1964 World's Fair. Building upon prior research on learning in virtual worlds, the project team will investigate how STEM concepts are advanced in a simulated multi-user virtual environment and studying the effectiveness of using Virtual Docents as enhancements to the informal learning process. The research and development deliverables have strong potential to advance the state of informal science education, research on modeling and simulation in virtual world development, and education research. Michigan Technological University will conduct the project formative and summative evaluations.
DATE: -
TEAM MEMBERS: Lori Walters Michael Moshell Charles Hughes Eileen Smith
resource project Media and Technology
The University of Southern California's Institute for Creative Technologies and the Museum of Science, Boston will create life-sized, 3-D Virtual Humans that will interact with visitors as interpretive guides and learning facilitators at science exhibits. Through the use of advanced artificial intelligence and intelligent tutoring techniques, Virtual Humans will provide a highly responsive functionality in their dialogue interpretation that will generate sophisticated interaction with visitors about the STEM content related to the exhibit. The project exemplifies how the confluence of science, technology, engineering, mathematics and education can creatively and collaboratively advance new tools and learning processes. The Virtual Human project will begin to present to the visitor a compelling, real life, interactive example of the future and of the related convergence of various interdisciplinary trends in technology, such as natural language voice recognition, mixed reality environments, para-holographic display, visitor recognition and prior activity recall, artificial intelligence, and other interdisciplinary trends. The 3-D, life-sized Virtual Humans will serve as museum educators in four capacities: 1) as a natural language dialogue-based interactive guide that can suggest exhibits to explore in specific galleries and answer questions about particular STEM content areas, such as computer science; 2) as a coach to help visitors understand and use particular interactive exhibits; 3) be the core focus of the Science behind the Virtual Humans exhibit; and 4) serve as an ongoing research effort to improve human and virtual human interactions at increasingly sophisticated levels of complexity. The deliverables will be designed to build upon visitor experiences and stimulate inquiry. A living lab enables visitors to become part of the research and development process. The project website will introduce visitors to the technologies used to build virtual humans and the research behind their implementation. The site will be augmented with videos and simulations and will generate user created content on virtual human characters. Project evaluation and research will collect language and behavioral data from visitors to inform the improvement of the virtual guide throughout the duration of the grant and to develop a database that directly supports other intelligent systems, and new interface design and development that will have broad impact across multiple fields.
DATE: -
TEAM MEMBERS: William Swartout David Traum Jacquelyn Morie Diane Piepol H. Chad Lane
resource project Media and Technology
The Educational Film Center (EFC) is developing a science, engineering, and technology careers exhibit for distribution to science museums and technology centers. The core of the exhibit kiosk, with related career graphics surrounds, is SET/QUEST, an interactive multimedia program for both Macintosh and PC/Windows using CD-Rom as the full motion video source. Teens and preteens will enter an interactive exploration of thirty careers with first person video profiles of people in science and engineering; animated/reality video simulations of a work experience in these fields, decision screens, and a database of over 200 more science and math-based professions. The documentary profiles, database, and a personal interest career match component will also be developed in alternative media formats (video, audio, print) for broad distribution to community and youth education networks, schools, and libraries. Specific emphasis in this project is being placed on reaching and attracting female, minority, and disabled youth. A parent outreach component has been developed and will be implemented by the Directorate of Education & Human Resources Programs of AAAS. The concept of the parent effort is to work directly with and through the national offices of four major national organizations with different institutional community roots -- Science Museums, Public Libraries, Schools, and Community Based Organizations -- to involve parents and families with SET Project materials and to provide them with information with which they can foster their children's pursuit of science and math education and careers in these fields. Initial efforts will be conducted in 18 cities. The project is a collaborative endeavor among three organizations: The Educationa l Film Center which will be responsible for management and development/production of the software and documentary video profiles; The New York Hall of Science which will be responsible for the exhibit kiosk and graphics, will design and develop the student workbook and user installation print, will serve as the principal test site for the exhibit, and will advise on software, interactive multimedia design, and installation options; and COMAP which will be responsible for direct involvement of the Advisory Board, for selecting and hiring content consultants, for assuring the accuracy of the science and math content, for formative and summative evaluation, and for developing and preparing community leader and school users guides for publication. Stephen Rabin, President of EFC, will serve as PI for the project.
DATE: -
TEAM MEMBERS: Stephen Rabin Barbara Flagg
resource project Media and Technology
This award provides support for Mr. Kamen to explore the feasibility of developing an interactive educational kiosk (to be named FIRST PLACE), programmed with electronic mathematics and science games and placed in out-of-school area such as shopping malls to reach K-12 children. Students would play the games and be rewards with coupons. This multi- disciplinary project would expand students access to science and mathematics, the learning into the economy, and present learning as a leisure time activity.
DATE: -
TEAM MEMBERS: Dean Kamen
resource project Media and Technology
This 12-month planning grant will create the foundation for a project based on meaningful, online, game-based learning. Specifically, it will enable the proposer to develop and validate story lines and game characters with middle-school aged children in two summer design institutes. In addition, the proposer will build partnerships with museums and informal learning institutions and develop a plan to work with these partners for the dissemination, promotion, use and evaluation of the future games. Intellectual Merit: The project will develop standards-linked design specifications for play scenarios, game characters and real-world, problem-based activities across STEM domains. These design specifications should be of significant value for future educational game development. Children will serve as "informants" during game design, providing input where most effective. This involvement in the planning process is critical to the success of the games, and should ensure the desired "kid appeal." Broader Impact: The strategy of involving advisory groups of children, including those at-risk, will allow the project to factor in ways to engage audiences underrepresented in the sciences by tailoring characters and activities that ensure broad appeal. In addition, the approach of solving puzzle-like problems embedded in a game's story narrative should appeal to both boys and girls. This project will generate a report for publication on the design process and resulting specifications.
DATE: -
TEAM MEMBERS: M Kinzie
resource research Media and Technology
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
DATE:
TEAM MEMBERS: Utah State University Victor Lee