Skip to main content

Community Repository Search Results

resource research Exhibitions
The open-access proceedings from this conference are available in both English and Spanish.
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Uduak Grace Thomas Bennett Attaway Lisa Chalik Jason Corwin Kevin Crowley Michelle Ciurria Colleen Cotter Martina Efeyini Ronnie Janoff-Bulman Jacklyn Grace Lacey Reyhaneh Maktoufi Bertram Malle Jo-Elle Mogerman Laura Niemi Laura Santhanam
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource project Media and Technology
The goal of this project is to promote informal STEM education in polar research through a novel interactive learning display that uses virtual and augmented reality technology. A new display system will be developed that combines the successful techniques of touch-enabled tabletop displays with new low-cost, head-mounted display technology to deliver an immersive 3D learning experience for the IceCube Neutrino Detection system located at the South Pole. The system will provide new means for engaging the public in learning about the IceCube Neutrino Dectection system and the challenges of Antarctic research.

The proposal relies on collaboration between three groups on the University of Wisconsin- Madison campus, including the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Games Learning Society (GLS). Once developed, the display system will be installed at the Wisconsin Institutes for Discovery Town Center, a public space that attracts close to 50,000 people per year. This proposal was submitted as an Exploratory Pathways proposal, meaning that it represents a chance to establish the basis for future research, design, and development of innovations or approaches. Outcomes from this project will inform the PIs of how best to extend the system to add more 3D environments for other research locations in Antarctica. The system will be implemented in an extensible fashion so that a user can select from one of several Antarctic research station locations, not just IceCube, from the main menu of the system and suddenly be immersed in a 3D world that seeks to teach users about polar research at that location. Contents of the interactive learning display will be translated into Spanish, and users will be able to choose which language they want to use. Evaluations of the system will also inform designers about how these museum-type systems impact learning outcomes for the general public.

This project was submitted to the Advancing Informal STEM Learning (AISL) program, but will be funded by the Division of Polar Programs. AISL seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Kevin Ponto
resource research Media and Technology
The Year in ISE is a slidedoc designed to track and characterize field growth, change and impact, important publications, and current topics in ISE in 2018. Use it to inform new strategies, find potential collaborators for your projects, and support proposal development. Scope This slidedoc highlights a selection of developments and resources in 2018 that were notable and potentially useful for the informal STEM education field. It is not intended to be comprehensive or exhaustive, nor to provide endorsement. To manage the scope and length, we have focused on meta analyses, consensus reports
DATE:
TEAM MEMBERS: James Bell
resource research Media and Technology
U!Scientist is an in-gallery touch table adaptation of the popular online citizen science project Galaxy Zoo. Taking advantage of the social opportunities in a museum setting, the project aims not only to enhance visitors’ science self-efficacy but also to encourage visitors to discuss their choices with friends and family. This poster was presented at the 2019 NSF AISL Principal Investigators Meeting.
DATE:
TEAM MEMBERS: Becky Rother
resource project Games, Simulations, and Interactives
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. The proposed project broadens the utility of Public Participation in Scientific Research (PPSR) approaches, which include citizen science, to support new angles in informal learning. It also extends previous work on interactive data visualizations in museums to encompass an element of active contribution to scientific data. To achieve these goals, this project will develop and research U!Scientist (pronounced `You, Scientist!')--a novel approach to using citizen science and learning research-based technology to engage museum visitors in learning about the process of science, shaping attitudes towards science, and science identity development. Through the U!Scientist multi-touch tabletop exhibit, visitors will: (1) interact with scientific data, (2) provide interpretations of data for direct use by scientists, (3) make statements based on evidence, and (4) visualize how their data classifications contribute to globe-spanning research projects. Visitors will also get to experience the process of science, gaining efficacy and confidence through these carefully designed interactions. This project brings together Zooniverse, experts in interactive design and learning based on large data visualizations in museums, and leaders in visitor experience and learning in science museums. Over fifty thousand museum visitors are expected to interact annually with U!Scientist through this effort. This impact will be multiplied by packaging the open-source platform so that others can easily instantiate U!Scientist at their institution.

The U!Scientist exhibit development process will follow rapid iterations of design, implementation, and revision driven by evaluation of experiences with museum visitors. It will involve close collaboration between specialists in computer science, human-computer interaction and educational design, informal science learning experts, and museum practitioners. The summative evaluation will be based on shadowing observations, U!Scientist and Zooniverse.org logfiles (i.e., automated collection of user behavior metrics), and surveys. Three key questions will be addressed through this effort: Q1) Will visitors participate in PPSR activities (via the U!Scientist touch table exhibit) on the museum floor, despite all the distractions and other learning opportunities competing for their attention? If so, who engages, for how long, and in what group configurations? Q2) If visitors do participate, will they re-engage with the content after the museum visit (i.e., continue on to Zooniverse.org)? Q3) Does engaging in PPSR via the touch table exhibit--with or without continued engagement in Zooniverse.org after the museum visit--lead to learning gains, improved understanding of the nature of science, improved attitudes towards science, and/or science identity development?
DATE: -
TEAM MEMBERS: Laura Trouille Sarah Cole Becky Rother
resource project Media and Technology
Becoming computationally literate is increasingly crucial to everyday life and to expanding workforce capacity. Research suggests that computational literacy--knowing what, when, how, and why to use the ideas of computer science, in combination with the capacity to view problems and potential solutions through the lens of computational structures and procedures--can be supported through digital game play. This project aims to develop a social and creative exhibit game that foregrounds aspects of computer science, specifically artificial intelligence (AI) and computer programming, in ways that enable youth to explore, construct, and share computational complex systems content with one another and other museum visitors. To play the game, pairs of youth visitors will use code cards to program the behavior of AI animals in a virtual forest. As they do so, youth will engage with computational literacy practices, such as basic computer programming, describing their computational ideas, and doing computational problem solving with their friends. Their activity will be projected on a large screen as a strategy for enabling youth to test, rehearse, and communicate their computational ideas and to also interest other visitors into computational problem solving.

Using multi-perspective and iterative design-based research, university learning scientists, museum practitioners, and game developers will pursue research questions around how science museums can better engage youth who are traditionally underrepresented in computer science in complex computational practices. Data sources will include interactive-log data, observations of visitor interactions with the game, visitor interviews, and visitor surveys. A multimodal and mixed methods approach that searches for convergences between qualitative analysis, quantitative analysis, and learning analytics will be used to generate research findings. Changes in computational literacy will be assessed by evaluating what problems visitors choose to solve with programming, how they frame those problems, and their selections from among possible solutions, what they program, how they program, and how they describe programming ideas. The results of this project will include: 1) a social, interactive gameplay experience that supports the development of computational literacy; 2) design principles for game-based exhibits that facilitate development of computational literacy; and 3) new knowledge of variations in design and gameplay across diverse gameplay users, including those from underrepresented groups in computer science. It is anticipated that 1,000 museum youth visitors will directly participate in the study.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Matthew Berland Leilah Lyons Matthew Cannady
resource project Media and Technology
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
DATE: -
TEAM MEMBERS: Mary Miller
resource research Media and Technology
In respect of the different modes of science communication including journalism, radio, online, I would propose that the process of making exhibitions and centres dedicated to science & technology is one of the hardest creative typologies. It also provides a very different type of engagement to other modes, in that it works in real time and space with real tangible objects and responsive media. The power of the real is also extended through the direct and collective involvement of people, providing a refreshing antidote to the potential alienating nature of social media and the ever-growing
DATE:
TEAM MEMBERS: Peter Higgins
resource research Media and Technology
This article presents some of the challenges faced in developing an interactive exhibit on nanoscience and nanotechnology in Brazil. Presenting a scientific-technological area which is still in formation and which is little known by the population leads to a (re)consideration of the role of museums and science centers in the conformation and consolidation of scientific practice itself. Museographically, the exhibit deals with the challenge of making matter visible in an expression which is distant from the human perception. Some reflections are presented here on the option of musealization
DATE:
TEAM MEMBERS: Sandra Murriello Djana Contier Marcelo Knobel
resource research Media and Technology
From exhibitions to theatrical performances, from fireworks to video games, countless events and ventures have been held all over the world in 2005 to mark the occasion of the World Year of Physics (WYP2005). The year that is drawing to a close has brought physics out into the streets and University campuses, but in a few cases physics has even invaded theater stages and art museums, it has involved musicians and even architects. The worldwide objective was to highlight a science that has more and more need to communicate its close connections with society, its involvement in themes that are
DATE:
TEAM MEMBERS: Marzia Mazzonetto Maria Chiara Montani
resource project Media and Technology
Living Liquid will identify strategies for creating visualization tools that can actively engage the public with emerging research about the ocean's microbes and their impact on our planet. It addresses a critical issue for the ISE field: creating ways for visitors to ask and answer their own questions about emerging areas of science with visualizations. This Pathway project will provide important lessons learned for a future full-scale development project at the Exploratorium's new location over San Francisco Bay, and for informal science educators and other professionals working to create interactive visualization tools using the vast data sets now available. Living Liquid is a collaboration between developers, educators and learning researchers at the Exploratorium, computer scientists at the Visualization Interface and Design Innovation Group at UC Davis, and marine scientists at the Center for Microbial Oceanography Research and Education. The project's research and development process includes a front-end study of visitors' interests and prior knowledge related to ocean microbes, interviews with scientists to identify potential datasets and activities, a survey of candidate visualizations, and a series of prototypes to identify promising strategies to engage visitors with and allow visitors to explore large scientific datasets through visualization tools.
DATE: -