Skip to main content

Community Repository Search Results

resource evaluation Public Programs
Final External Evaluation Report for Informal STEM Learning at Biological Field Stations, an NSF AISL Exploratory Pathways project, which studied the pedagogical and andragogical characteristics of informal educational outreach activities at field stations. This report summarizes the project team’s major research activities and the contextual factors that supported that work. Appendix includes interview protocol.
DATE:
TEAM MEMBERS: Kristin Bass Rhonda Struminger Jill Zarestky A. Michelle Lawing Lauren Vilen Rachel A. Short
resource research Public Programs
Field stations across the United States provide learning opportunities to the general public through their outreach programming. With approximately 78% and 98% of the US population living within 60 and 120 miles of a field station, respectively, stations have the potential to be key providers of informal STEM education. We surveyed a sample of US biological field stations and asked them to describe their outreach programming and goals. Our findings indicate that field stations prioritize outreach by dedicating personnel and fiscal resources, but such initiatives are highly variable in
DATE:
TEAM MEMBERS: Rhonda Struminger Jill Zarestky Rachel Short A Michelle Lawing
resource project Media and Technology
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway M.J. Nehasil Cathy Whitlock
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal Science Learning program funds innovative research, approaches and resources for use in a variety of settings. This Exploratory Pathways project brings together scientists and science curriculum experts with field station leaders to study informal science learning at biological field stations. The objective is to understand and evaluate the unique qualities of field stations as centers of informal and enduring science learning for the non-science community. There are over 400 field stations and represent a science communication mechanism that if available to most US citizens. This project is a collaboration between Texas A&M University and Colorado State University.

Field stations typically engage in informal science learning. While there are great examples of informal learning through outreach activities at field stations, little is known about what is happening in the aggregate at these establishments. This project documents the outreach work of field stations and explores the connections between how the outreach activities engage learners, incorporate science topics, and address science learning. By creating an Outreach Ontology, a multidimensional framework around the outreach activities, this work provides a valuable resource and reference to informal science researchers who seek to understand what informal learning projects are undertaken at field stations, and how these activities fit into the broader context of informal science learning. This project will help field stations collaborate on improving informal STEM learning activities by bringing them together to discuss their efforts and by developing a publicly available, searchable database detailing their activities. A particular benefit to advancing informal STEM learning by investigating field stations is the broad range of people and communities that are involved with and affected by field station outreach activities.
DATE: -
TEAM MEMBERS: Jill Zarestky Rhonda Struminger Michelle Lawing
resource research Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous researchers and communities in domestic and international settings. 4 MSU and 2 tribal college student participants engaged research projects with their home communities in the western U.S.—Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, Fort Berthold Mandan/Hidatsa/Arikara—and with Indigenous communities in Mongolia Research was initiated with home communities in spring 2016, and with Indigenous researchers and herder (seminomadic) communities in the Darhad Valley of
DATE:
TEAM MEMBERS: Kristin Ruppel Cliff Montagne Lisa Lone Fight Badamgarav Dovchin Taylor Elder Camaleigh Old Coyote Joaquin Small-Rodriguez Esther Hall Tillie Stewart Kendra Teague
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource project Public Programs
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.

This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
DATE: -
TEAM MEMBERS: Carolyn Brinkworth Heather Lazrus Rebecca Haacker-Santos Daniel Wildcat Kyle Whyte Kevin Bonine
resource project Public Programs
This INSPIRE project addresses the issue of high volume hydraulic fracturing, also called fracking, and its effects on ground water resources. Fracking allows drillers to extract natural gas from shale deep within the earth. Methane gas sometimes escapes from shale gas wells and can contaminate water resources or leak into the atmosphere where it contributes to greenhouse gas emissions. Monitoring for these potential leaks is difficult because methane is also released into aquifers naturally, and because monitoring is time- and resource-intensive. Such subsurface leakage may also be relatively rare. This project seeks to improve overall understanding of the impacts of natural gas drilling using both advances in computer science and geoscience, and to teach the public about such impacts. The project will elucidate both the effects of human activities such as shale gas development as well as natural processes which release methane into natural waters. Results of the proposed research will lead to a better understanding of water quality in areas of shale-gas development and will highlight problems and potentially problematic management practices. The research will advance both the fields of geoscience and computer science, will train interdisciplinary graduate students, and involve citizen scientists in collecting data and understanding environmental data analysis.

The project combines new hydro-geochemical strategies and data mining approaches to study the release of methane into streams and ground waters. For example, researchers will explore how to analyze the heterogeneous spatial data that describe distributions of methane concentrations in natural waters. The objectives of this project are to i) transform the ability to measure methane in streams; ii) train citizen scientists to work with project scientists to sample streams in an area of shale-gas development and publish large-volume datasets of methane in natural waters and aquifers; iii) innovate data mining and machine learning methods for environmental data to identify anomalous spots with potential leakage; iv) run field campaigns to measure methane concentrations and isotopic signatures of water samples in these spots; v) foster dialogue among nonscientists, consultants, university scientists, members of the gas industry, government agencies, and nonprofit organizations in and beyond the target region. Toward this end, the team will host workshops aimed to build dialogue among stakeholders and will release data analytic software for environmental measurements to benefit a broader research community.
DATE: -
TEAM MEMBERS: Susan Brantley Zhenhui Li
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Research in Service to Practice project will examine how a wide range of pre-college out-of-school-time activities facilitate or hinder females' participation in STEM fields in terms of interest, identity, and career choices. The study will address the ongoing problem that, despite females' persistence to degree once declaring a major in college, initially fewer females than males choose a STEM career path. To uncover what these factors might be, this study will look at the extent to which college freshmen's pre-college involvement in informal activities (e.g., science clubs, internships, shadowing of STEM professionals, museum-going, engineering competitions, citizen science pursuits, summer camps, and hobbies) is associated with their career aspirations and avocational STEM interests and pursuits. While deep-seated factors, originating in culture and gender socialization, sometimes lower females' interest in STEM throughout schooling, this study will examine the degree to which out-of-school-time involvement ameliorates the subtle messages females encounter about women and science that can interfere with their aspiration to a STEM careers.

The Social Cognitive Career Theory will serve as the theoretical framework to connect the development of interest in STEM with students' later career choices. An epidemiological approach will be used to test a wide range of hypotheses garnered from a review of relevant literature, face-to-face or telephone interviews with stakeholders, and retrospective online surveys of students. These hypotheses, as well as questions about the students' demographic background and in-school experiences, will be incorporated into the main empirical instrument, which will be a comprehensive paper-and-pencil survey to be administered in classes, such as English Composition, that are compulsory for both students with STEM interests and those without by 6500 students entering 40 large and small institutions of higher learning. Data analysis will proceed from descriptive statistics, such as contingency tables and correlation matrices, to multiple regression and hierarchical modeling that will link out-of-school-time experiences to STEM interest, identity, and career aspirations. Factor analysis will be used to combine individual out-of-school activities into indices. Propensity score weighting will be used to estimate causal effects in cases where out-of-school-time activities may be confounded with other factors. The expected products will be scholarly publications and presentations. Results will be disseminated to out-of-school-time providers and stakeholders, educators, and educational researchers through appropriate-level journals and national meetings and conferences. In addition, the Public Affairs and Information Office of the Harvard-Smithsonian Center for Astrophysics will assist with communicating results through mainstream media. Press releases will be available through academic outlets and Op-Ed pieces for newspapers. The expected outcome will be research-based evidence about which types of out-of-school STEM experiences may be effective in increasing young females' STEM interests. This information will be crucial to educators, service providers, as well as policy makers who work toward broadening the participation of females in STEM.
DATE: -
TEAM MEMBERS: Roy Gould Philip Sadler Gerhard Sonnert
resource research Public Programs
Citizen science has proven useful in advancing scientific research, but participant learning outcomes are not often assessed. This case study describes the implementation and tailoring of an in-depth assessment of the educational impact of two citizen science projects in an undergraduate, general education course. Mixed-methods assessment of citizen science within a college classroom demonstrates that public participation in scientific research can positively alter attitudes towards science. The timing and type of assessments yielded significantly different results and qualitative assessment
DATE:
TEAM MEMBERS: Tyler Vitone Kathryn Stofer M. Sedonia Steninger Jiri Hulcr Robert Dunn Andrea Lucky
resource research Public Programs
Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal
DATE:
TEAM MEMBERS: Susan Dickerson-Lange Karla Eitel Leslie Dorsey Timothy Link Jessica Lundquist