Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Sherry Hsi Darrell Porcello Hyun Joo
resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Janice McDonnell Marissa Staffen​ ​
resource project Media and Technology
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource research Media and Technology
In July 2020, Dr. Brigid Barron and her team at Stanford University’s Graduate School of Education and the Joan Ganz Cooney Center convened a virtual workshop to mobilize a community of investigators to explore innovative methods for studying family and community learning during the pandemic. Participants included NSF RAPID-COVID grantees from Stanford University, University of Washington, and the University of Michigan. This report summarizes the strategies and insights generated at this workshop so that they may be shared among a wider network of researchers, practitioners, funders, and
DATE:
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Despite the rich scientific evidence of adaptations and their evolutionary basis, there are concerning public misconceptions about evolution, processes of natural selection, and adaptations in the biodiverse world. Such misconceptions begin early. Younger elementary school children are often resistant to the idea that one “kind” of animal could descend from a completely different kind of animal, and they see features as having always existed. Other misconceptions lead to an inaccurate belief that changes in individual organisms acquired in a lifetime are passed directly on to offspring or that entire populations transform as a whole. These cognitive biases and "intuitive” misunderstandings can persist into adulthood. This Innovations in Development project will counter that narrative through an informal science project focusing on the blue whale one of nature’s most spectacular stories of adaptation. It is a species that lives life at extremes: a long-distance migrator, a deep diver, an extravagant eater, the largest animal to ever exist. With its awe-inspiring size and rich mosaic of anatomical, physiological, and behavioral specializations, it serves as a bridge to an enriched understanding of universal concepts in elementary biology and can begin to dispel the deeply rooted misconceptions. The project deliverables include a giant screen film documenting the field work of research scientists studying the blue whales in the Indian Ocean and Gulf of Mexico; multi-platform educational modules and programs that will build on the blue whale content from the film for use in science center programs and rural libraries; and professional development webinars that will offer content utilization and presentation skills for ISE facilitators. Project partners include California Science Center, STAR Library Education Network, HHMI Tangled Bank Studios and SK Films.

The external evaluation studies will gather data from 20 participating rural libraries and 6 science museums. A formative evaluation of the film will be conducted in a giant screen theater setting with 75 families. After viewing a fine-cut version of the film they will complete age-appropriate post-viewing surveys on the film’s engagement, storytelling, content appeal and clarity, and learning value in communicating key science concepts. An external summative evaluation will include three studies. Study 1 will assess the implementation of the project at the 26 organizations, addressing the question: To what extent is the project implemented as envisioned in the libraries and science center settings? Baseline information will be collected, and later partners will complete post-grant surveys to report on their actual implementation of the project elements. In addition, the study will examine outcomes relating to professional development. Study 2 will be an evaluation of the film as experienced by 400 youth and parents in science centers and examining the question: To what extent does experiencing the film engage youth and parents and affect their interest, curiosity, and knowledge of blue whales, adaptations, and the scientific process? Study 3 will examine: To what extent and how does experiencing an educational module (virtual field trips, hands on activities, augmented reality) affect youth and parents’ interest, curiosity, and knowledge of adaptations and scientific process?
DATE: -
TEAM MEMBERS: Charles Kopczak Gretchen Bazela
resource project Media and Technology
Black girls display high interest, confidence and ability in STEM but face multiple barriers including racial, ethnic and gender stereotypes, low exposure to STEM role models, low awareness of diverse STEM fields and financial obstacles to STEM education. It is critical to infuse STEM education with specific and intentional culturally responsive and anti-racist strategies to attract and retain Black girls in STEM. Through this combination of media, role modeling and outreach, Black SciGirls will help increase access to STEM education for Black girls, preparing them for future workforce participation. This project will study the impacts on elementary/middle school Black girls’ exposure to early career Black female STEM professionals as role models. Deliverables include 1) professional development for STEM educators and Black STEM professional women to prepare them to lead STEM programs for girls 2) a PBS series of role model videos of early-career Black STEM professionals and 3) a research study that examines how/if in person and media-based STEM role models increase Black girls’ interest and confidence in STEM, motivation to pursue future STEM studies, and STEM identity. While women make up 47% of the U.S. workforce, they are underrepresented in STEM and only 1.6% are Black women.

The research study will examine how educators’ use of role models addresses a critical barrier for Black girls, seeing women in STEM who look like them. The research study questions are: How and in what ways do Black STEM women role models influence Black girls’ interest in STEM? How and to what extent do role models report changes in their confidence and ability to engage girls in STEM as a result of training in best practices in role modelling? and, How and to what extent are parents engaged in supporting girls’ involvement in STEM, as a result of the participation of role models? The research team will visit participating local SciGirls programs to collect qualitative data, including observations of program activities, interviews, and focus groups. To ensure reliable outcomes and utilize robust theoretical underpinnings, the research will combine pre/post survey data and an in-depth cross-case studies employing qualitative and quantitative data collection. This mixed-methods approach will enable gathering data that comprehensively offers insight into Black girls’ STEM experiences and those of the Black STEM professional women role models and parents who support them. Qualitative data that centers girls’, role models’, and parents’ perspectives will contribute to this identity-centered study. A culturally responsive evaluation will determine the extent to which the project builds educators’ ability to integrate equitable and anti-racist practices to build Black girls’ interest and confidence in STEM studies.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Rita Karl Angel Miles Nash Ronda Bullock Adrienne Stephenson Lataisia Jones
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
This RAPID award is made by the AISL program in the Division of Research on Learning in the Directorate for Education and Human Resources, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. This project addresses two critical aspects of the impact on COVID-19 on families: (a) the large-scale shift to at-home learning based on nationwide school closures and (b) the critical need for families to understand the basic science of virus transmission and prevention. To address these needs, the project team will develop a series of STEM activities for families with children in grades K-6 that make use of items readily available in most households. The activities help children and their families learn about viruses, virus transmission, and virus prevention while also developing other STEM-skills, particularly related to engineering design. Importantly, the project team also considers the emotional well-being of children and families during the disruption of the COVID-19 pandemic. Led by researchers from Indiana University and Binghamton University, and experts in educational resource development from Science Friday (a non-profit organization dedicated to increasing the public's access to science and scientific information through podcasts, digital videos, original web articles, and educational resources for teachers and informal educators) the project is further supported by partnerships with the New York Hall of Science, Amazeum (AR), the Gulf of Maine Research Institute (ME), The Tech Museum of Innovation (CA), the Indiana State Museum, and Kopernik Observatory Science Center (NY). The activities will be shared with families through live-streamed web sessions that introduce the activity, give tips to adults for facilitation, share a bit on related STEM careers and engage the audience in dialog about the activity and their current experiences. Versions of the sessions that are recorded will be edited and include closed-captioning and subtitles in multiple languages before being posted on platforms such as YouTube.

This project uses a design-based research approach to investigate strategies for enabling families to actively engage with STEM while home and away from their traditional institutions during a period of crisis. The research components focus on:


Engagement: How do families engage in the activity tasks, in terms of processes, practices, and use of resources? Who participated, why did they choose to participate and how did they engage (including modification of activities)? What barriers prevented interested families from completing activities?
Impact: How did the activities change participants? feelings of: a) efficacy around STEM and b) connectedness/ isolation, during extended school closures?
The Activities: Which activities had the greatest uptake? How many activity ideas were submitted by those outside of the team? What was the age/content focus of each of these activities?


The researchers will analyze social media data (including data on resource downloads and use of tracked links, YouTube and Facebook views, comment threads during livestreams and Likes/Shares/Follows across social media sites) to refine and improve the activities and programming as well as learn about the ways families are engaging in the activities. The researchers will solicit survey responses from website visitors to gather more information on participants, why they participated, how they engaged and how the activities impacted participants? efficacy around STEM and their feelings of connectedness or isolation. The researchers will also ask participants to submit images, videos and text that describes what they are making and their process along the way. Analysis of this data would lead to insights on how children and families use STEM language and practices; how children and families ask questions and use COVID-19-related and other information as part of their design work; and how ideas are formed, shaped and refined as families engage in design and making. While the project focuses on a unique opportunity to collect data on family STEM engagement as families respond to disruptions from the COVID-19 pandemic, this project and its findings will provide a knowledge base that can be utilized to inform future responses to national emergencies, other work aimed at promoting family learning at home, and approaches to supporting children in open-ended problem solving.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource research Media and Technology
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong. The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong. STEM educators are eager to foster long term collaboration with
DATE:
TEAM MEMBERS: Siu Po Lee David Foster The Croucher Foundation