Skip to main content

Community Repository Search Results

resource research Public Programs
Design-based research (DBR) is used to study learning in environments that are designed and systematically changed by the researcher. DBR is not a fixed “cookbook” method; it is a collection of approaches that involve a commitment to studying activity in naturalistic settings, many of which are designed and systematically changed by the researcher, with the goal of advancing theory at the same time directly impacting practice. The goal of DBR (sometimes also referred to as design experiments) is to use the close study of learning as it unfolds within a naturalistic context that contains
DATE:
TEAM MEMBERS: Sasha Barab
resource research Professional Development, Conferences, and Networks
Design research is strongly associated with the learning sciences community, and in the 2 decades since its conception it has become broadly accepted. Yet within and without the learning sciences there remains confusion about how to do design research, with most scholarship on the approach describing what it is rather than how to do it. This article describes a technique for mapping conjectures through a learning environment design, distinguishing conjectures about how the design should function from theoretical conjectures that explain how that function produces intended outcomes.
DATE:
TEAM MEMBERS: William Sandoval
resource research Media and Technology
Developing the ability to read and critically assess science-themed media reports is of great importance, given the media’s pervasive and powerful influence on people’s beliefs and behaviours. This study examines a technique designed to develop high school students’ critical reading abilities. Findings suggest a progression from blind belief toward the ability to draw conclusions based on scientific information.
DATE:
TEAM MEMBERS: Catarina Filipe Correia Heather King
resource research Media and Technology
Even in the best-resourced science communication institutions, poor quality evaluation methods are routinely employed. This leads to questionable data, specious conclusions and stunted growth in the quality and effectiveness of science communication practice. Good impact evaluation requires upstream planning, clear objectives from practitioners, relevant research skills and a commitment to improving practice based on evaluation evidence.
DATE:
TEAM MEMBERS: Eric Jensen
resource research Media and Technology
How do people make sense of conflicting beliefs? Although Gottlieb & Wineburg’s paper is about highly educated professionals reading history, informal science educators will recognize similar issues when working with people who hold beliefs incompatible with scientific ways of understanding the world. “Epistemic switching” was a way of considering criteria for truth, reliability, and validity according to one belief system or another. Rather than simply believing or excluding ideas as people who held to only one value system, the people with multiple, competing affiliations actually more
DATE:
TEAM MEMBERS: Suzanne Perin
resource project Public Programs
The University of Oklahoma will increase knowledge about how youths create information and how information professionals can help them become successful information creators by promoting their information and digital literacies and other 21st century skills. This Early Career research project builds on existing research and results of previously funded IMLS Learning Labs by investigating how twenty-four middle school students engaged in project-based, guided-inquiry STEM learning to create information in a school library Learning Lab/Makerspace. The project will result in a model of information-creating behavior that can help develop a groundbreaking approach to information literacy instructions and creative programs.
DATE: -
TEAM MEMBERS: Kyungwon Koh
resource project Public Programs
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.

The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
DATE: -
TEAM MEMBERS: Sherry Hsi Michael Eisenberg
resource evaluation Public Programs
These resources are designed to identify opportunities to improve training for educators and researchers during implementation of the Living Laboratory model. The Data Collection Guidelines provide general instructions and tips for conducting evaluation through observations of (and/or interviews with) visitors. Two versions of each instrument (Researcher-Caregiver Conversations Instrument and Research Toy Interactions Instrument) are included: one can be modified and printed for data collection; the second is an annotated version, which includes more detailed instructions for each item in the
DATE:
resource project Exhibitions
Natural History museums have identified a need to transform their traditional spaces into vital forces for science education. The Carnegie Museum of Natural History (CMNH) will implement “Seeing as a Scientist,” a design-based research initiative to develop and test gallery interventions that have the potential to increase scientific observation skills for family groups. Working with the University of Pittsburgh’s Center for Learning in Out-of-School Environments (UPCLOSE), CMNH will pilot a series of quick changes and additions to dioramas and outline expectations for each. Visitors will be observed to measure the degree of engagement in scientific observation (deliberate looking in order to understand visual evidence)--an essential skill for learning across scientific disciplines. The four most promising interventions will be evaluated to determine which are most successful in providing the necessary support for families to establish shared focus and two-way, science-based conversation. The project will include a blog to share information and to disseminate the results to other museums.
DATE: -
TEAM MEMBERS: Chelsey Pucka
resource project Public Programs
This University of Wisconsin System will conduct research to understand how the Madison Public Library (MPL) is building a production-oriented approach to literacy and learning through their maker-focused program, the Bubbler. On a national level, this project speaks to educational research communities, professionals, members of informal learning institutions, and organizers of designed makerspaces. At the local level, it addresses underserved populations in the Madison area and MPL in evaluating and developing the Bubbler. Findings will be shared through conference presentations, journal articles, and networks of library professionals.
DATE: -
TEAM MEMBERS: Rebekah Willett
resource research Media and Technology
Informal environments provide students with unique experiences that allow them to actively participate in activities while promoting a positive attitude toward and an increased interest in science. One way to enhance informal science experiences is through the integration of mobile technologies. This integration is particularly useful in engaging underrepresented students in learning science. Our informal environmental science program engages underrepresented, fifth-grade students in an informal learning environment supplemented with mobile tablet technology (iPads). The purpose of this study
DATE:
TEAM MEMBERS: Kristy Daniel (Halverson) Carrie Boyce Chandrani Mishra Aimee Thomas
resource project Public Programs
This project by teams at the University of Alaska and the Oregon Museum of Science and Industry will engage the public in the topic of the nature and prevalence of permafrost, its scale on the earth and the important role it plays in the global climate. It builds on 50 years of informal education and outreach at the Alaskan Permafrost Tunnel near Fairbanks, AK, which, since the 1960s, has been the Nation's only underground facility for research related to permafrost and climate. The project has four components: (1) a nationally distributed 2,000 square-foot traveling exhibition; (2) exhibit and program enhancements to the learning opportunities at the tunnel; (3) programs, table-top exhibits and oral history research in 27 Native Alaskan villages; and (4) an education research study. Each of these components will be evaluated over the course of the work. By upgrading the displays at the tunnel, and by taking traveling programs to the villages, the work will extend the tunnel experience across Alaska. In the villages the team will collect stories about climate change, along with samples of real ancient ice and permafrost. These stories and materials will be used in the traveling exhibit which is expected to be at three museums per year for eight years. The research component of the initiative will build on the observation to date that the tunnel has provided thousands of visitors with an underground immersive environment where they learn about the science research being conducted and engage with climate-sensitive materials (e.g., permafrost, wedge ice, frozen silt, Pleistocene bones) using all of their senses. It has been conjectured that their learning experiences are enhanced by interacting with real vs. replicated objects. As museums often contain exhibits that are more likely to contain replicated and/or virtual objects and environments, understanding the impact that these different categories of objects have on learning is important. Using both types of materials, the project will investigate differences in their efficacy in informal science learning institutions related to climate change. Real objects are postulated to have the following attributes that stimulate fuller engagement; they are (1) information-rich by virtue of such features as their texture, odor, and dimensionality; (2) at real-life scale; (3) authentic, i.e., original objects; and (4) often unique, i.e., have inherent value. Research questions will explore the potential impacts on learning of these and related features. Methods employed will be observation, video, and interviews of the public with a particular focus on visitor talk with respect to explanations and elaborations about permafrost, tipping points, climate change, and geological time.
DATE: -
TEAM MEMBERS: Matthew Sturm Laura Conner Victoria Coats