Skip to main content

Community Repository Search Results

resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource research Professional Development, Conferences, and Networks
A recent article published in Science Communication addresses the training issue in issue in our discipline. Henk Mulder and his colleagues discuss the shared features that university curricula should or could have to favour the full admission of science communication into the academic circle. Having analysed analogies and differences in the curricula that a number of schools provide all over the world, the authors reached the conclusion that much remains to be done. Science communication seems far from having found shared fundamental references, lessons that cannot be missed in the practical
DATE:
TEAM MEMBERS: Nico Pitrelli Yurij Castelfranchi
resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource project Public Programs
The University of Washington’s Museology Program, in partnership with the Woodland Park Zoo and the Learning in Informal and Formal Environments Research Center is developing a model of university-community collaboration where students work with client museums, zoos and aquaria to evaluate exhibits and programs under the guidance of a research mentor. Students will gain experience in audience research and evaluation, as well as in project management, collaboration, and leadership. Staff at participating museums will advance their personal knowledge about visitors and the field of museum evaluation. The project will prepare a new generation of evaluators and museum practitioners through an innovative apprentice-styled laboratory that integrates the strengths of mentoring, fieldwork, academics, and client-centered experiences. Project Advisors include John Falk, Julie Johnson, Randi Korn, Marjorie Schwarzer, and Patterson Williams. Project started January, 2009 with 24 graduate students in the first cadre.
DATE:
TEAM MEMBERS: kris morrissey Reed Stevens Kathryn Owen Alexandra Criado Nick Visscher Alex Curio Jessica Newkirk Elizabeth Rosino Marta Beyer Erin Wilcox Andrea Godinez Amanda Mae Amanda Dearolph
resource project Public Programs
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE: -
TEAM MEMBERS: James Mcginnis Spencer Benson Scott Dantley
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource evaluation Professional Development, Conferences, and Networks
Nanoscale Education Outreach (NEO) workshop participants were interviewed 6+ months after their attendance to determine the effect of the workshop on the participants' professional capacity and to determine the effect of the participants' involvement in the broader NISE Network. 33 of the 87 total participants were interviewed over several months.
DATE:
TEAM MEMBERS: Scott Ewing
resource project Professional Development, Conferences, and Networks
The Center for Informal Learning and Schools (CILS) is a five-year collaborative effort between the Exploratorium in San Francisco, the University of California at Santa Cruz, and King's College London. The purpose of the Center is to study the intersection of informal science learning that takes place in museums and science centers and formal learning that takes place in schools, and to prepare leaders in informal science education. Through the efforts of the center, new doctoral level leaders will be prepared who understand how informal science learning takes place and how informal institutions can contribute to science education reform. A Ph.D. program will be offered to 16 individuals at King's College London (two cohorts of eight) and a post-doctoral program to six scientists interested in issues of learning and teaching in informal settings. A doctoral program is planned at the University of California at Santa Cruz for 24 students, 12 whose interests are primarily in education and 12 who come from the sciences. In addition to doctoral level training, there will be a certification program for existing informal science professionals to better enable them to support teachers, students and the general public. That program will provide 160 informal science educators 120 hours of professional development experiences, and an additional 24 informal science educators with a master's degree in informal science education at UC Santa Cruz. A Bay Area Institute will be developed to serve as a central focus for all CILS activities. It will bring together researchers and practitioners; it will offer courses and workshops for graduate students; and it will provide a central location for reporting research findings and methodologies that focus on how informal learning institutions can best contribute to science education reform.
DATE: -
TEAM MEMBERS: Robert Semper Jonathan Osborne Lynda Goff Rodney Ogawa Richard Duschi Joyce Justus
resource project Public Programs
Building Demand for Math Literacy is a comprehensive project designed to increase arithmetic and algebraic mathematical competency among underserved youth, as well as high school and college students trained as Math Literacy Workers. This project builds on the success of the nationally renowned Algebra Project that is designed to foster mathematics achievement among inner city youth. Math Literacy Workers will deliver after school activities to African-American and Hispanic youth in grades 3-6. In addition to offering weekly math literacy workshops, Math Literacy Workers will also develop and implement Community Events for Mathematics Literacy and activities for families in the following cities: Boston, MA; Chicago, IL; Jackson, MS; Miami, FL; Yuma, AZ; New Orleans, LA; San Francisco, CA and Newark, DE. The strategic impact will be demonstrated in the knowledge gained about the impact of diverse learning environments on mathematics literacy, effective strategies for family support of math learning, and the impact of culturally relevant software. Collaborators include the Algebra Project, the TIZ Media Foundation, and the Illinois Institute of Technology, as well as a host of community-based and educational partners. The project deliverables consist of a corps of trained Math Literacy Workers, workshops for youth, training materials and multimedia learning modules. It is anticipated this project will impact over 4,000 youth in grades 3-6, 700 high school and college students, and almost 4,000 family and community participants.
DATE: -
TEAM MEMBERS: Omowale Moses Leroy Kennedy
resource project Professional Development, Conferences, and Networks
This CAREER grant interweaves research and teaching focused on understanding how social groups construct meaning during scientific conversations across different learning contexts, such as classrooms, museums and the home. This work will be translated into formal educational settings and used to inform teaching practices within pre-service University and in-service school district settings. The research and educational emphasis will be on creating conceptual links between social learning in diverse settings and the creation of corridors of opportunity between formal and informal learning institutions. To date there has been little research with families from cultural and linguistic minority populations, such as Latino families, at informal learning settings and virtually none that integrates formal and informal learning, or impacts teaching. The five-year project will: 1. Conduct Study 1, aimed at making fundamental cross-cultural comparisons of family conversational meaning making at the Monterey Bay Aquarium and linking this work with family interviews, reflective conversations and visits to family homes; 2. Review the theoretical framework and conduct Study 2, which will incorporate lessons learned from Study 1, and linking this research to formal classrooms; and 3. Use the findings (at each stage) to inform teaching practice with UCSC undergraduate (Science majors) and graduate (Science credential, MA and Ph.D.) students, and, in collaboration with teacher research groups for new and experienced teacher in schools that serve predominantly Latino students. This research plan provides an opportunity for viewing several inter-connected mechanisms, including family interactions and conversations, compelling science content, naturalistic learning in museum settings, and, finally, analyzing these factors in order to inform teaching practices that promote bilingual minority students to the rank of scientists.
DATE: -
TEAM MEMBERS: Doris Ash