Skip to main content

Community Repository Search Results

resource research Media and Technology
This commentary introduces a preliminary conceptual framework for approaching putative effects of scholarly online systems on collaboration inside and outside of academia. The first part outlines a typology of scholarly online systems (SOS), i.e., the triad of specialised portals, specialised information services and scholarly online networks which is developed on the basis of nine German examples. In its second part, the commentary argues that we know little about collaborative scholarly community building by means of SOS. The commentary closes with some remarks on further research questions
DATE:
TEAM MEMBERS: Dirk Hommrich
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Museum of Science, Boston (MOS) and Boston University (BU) will conduct a Pilot and Feasibility Study project that leverages the current Living Laboratory (LL) model and expand it to engage high school students (teens) in experimental psychology research, science communication and science education activities. In LL, which is now an extensive network of museums and university researchers across the country, scientists and museum staff collaborate to engage children in studies on the museum floor and educate caregivers about the research. Multi-site implementation and evaluation of LL has also documented positive impacts for undergraduate researchers. Many sites are eager to extend these benefits to high school students by engaging them as practitioners within the model and by providing them with opportunities to engage in current research, education and communication, thereby helping to foster stronger youth identities with science and its applications in society. This project expands a ten-year LL partnership between MOS and BU to: 1) pilot a program in which high school students both conduct scientific research and engage the public in learning about science; 2) explore strategies for museums and universities to collaboratively engage, support and mentor high school students in science research, communication and education activities; 3) document curricular, other programmatic, and evaluation materials; and 4) convene professional participants to provide feedback on pilot materials, and assess the viability of implementing similar programs at additional sites. Guided by developmental evaluation, these activities will generate knowledge for the field, and act to increase professional capacity to integrate experiences for teens at multiple LL sites in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Becki Kipling Peter Blake Rachel Fyler Katie Todd Ian Campbell Tess Harvey Owen Weitzman Allison Anderson
resource project K-12 Programs
The LiFE Project, an NSF INCLUDES Design and Development Launch Pilot, will investigate and design a collaborative effort to counter the stereotypical expectation that boys are "naturally" better at science and math which becomes a self-fulfilling prophecy, silently shaping the girls'own perceptions of their ability. LiFE collaborators will address this problem at its source: the early learning experiences of elementary school girls. The elementary-middle school period is critical because by 8th grade, many girls have left the STEM pathway forever. The key to reversing the trend is finding effective ways to showcase STEM as a collaborative, people-rich space in which girls can participate together, be themselves, and engage in exploration. Research indicates that girls prefer collaborative activities that can make a difference in the world. Partnering with a coalition of economically and racially diverse New Jersey elementary schools, LiFE will employ "iSTEAM" learning strategies that encourage girls to apply the tools of various disciplines to investigate and solve real-world problems in an open environment of innovation, collaboration, and communication. This approach promises to be especially effective in engaging girls.

LiFE will build on a successful Girls Science Club (GSC) model that introduces girls in grades 3-4 to hands-on iSTEAM exploration activities using Problem/Project-Based Learning strategies. Additional activities will leverage the expertise of the project's corporate/government partners (including Apple and USARMY) to build communication and leadership skills. LiFE will sustain the GSC's benefits by developing clubs for grades 5-6 involving enriched content and long-term independent projects. Eventually, a tiered peer network will link girls from elementary school through women college students and female STEM professionals--each tier mentoring the tiers below. This network will sustain a crucial "sense of community" to retain women in STEM. Within LiFE's social innovation framework approach, participating districts will tailor the GSC to their community while also working together toward shared common goals. LiFE will study the impact of GSCs on persistence of girls' interest in STEM into grade 7. Based on this research, LiFE will develop a cost-effective template that can be replicated across the US. LiFE will bring problem-based iSTEAM concepts to girls of all academic levels in their elementary schools years while, having a community focus with participant-developed projects in a non-competitive environment and leveraging the resources of academic, corporate and government partners to foster broader participation by women in STEM careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Bruce Bukiet James Lipuma Nancy Steffen-Fluhr
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource project K-12 Programs
Community colleges play a vital role in educating undergraduate students. These higher education institutions educate nearly half of the nation's undergraduate students, particularly among low-income and first-generation students and students of color. Because of the rich diversity that currently exists at these institutional-types, there are immense opportunities to broadening participation throughout the engineering enterprise. To this end, the investigator outlines a joint collaboration with five community colleges, three school systems, two college career academies, and a state partner in Georgia - referred as the Georgia Science, Technology, and Engineering Partnerships for Success (GA STEPS) - to provide dual enrollment classes in career pathways for Georgia high school students in grades 9-12, thereby allowing secondary students to earn college credit. The Georgia STEPS program proposes to leverage mechatronics engineering as a means for broadening engineering participation for community colleges and underserved, underrepresented populations in 48 rural counties to increase engineering awareness, skills training and college and career readiness. The project builds on an existing collaboration that has developed successful engineering opportunities at the community college level, by including a wider regional network of rural Georgia counties and high schools. Further, this project has immense potential to transform engineering education and course-taking for students at the secondary and postsecondary level in Georgia and beyond. It has potential great potential to be scaled and replicated at other placed around the United States.

The project's intellectual merit and innovation is that it leverages a successful mechatronics engineering curriculum that supports engineering skills that support local industry as well as supporting innovations in the mechatronics field. The project includes a collective impact framework, involving various stakeholders and aligning quantitative and qualitative metrics and measurable objectives. The broader impacts of this project is that it increases the engineering knowledge and skills of underserved, underrepresented students that are enrolled in community colleges. Also, the impact to rural communities in Georgia support the fact that this project would meet broader groups that can be positively impacted by this type of collaborative. The ability to provide different parts of this engineering discipline across broad audiences in community colleges - that support underrepresented groups understanding of mechatronics engineering - is broadly useful to the field of engineering.
DATE: -
TEAM MEMBERS: Shawn Utley
resource research Public Programs
Educational approaches that provide meaningful, relevant opportunities for place-based learning have been shown to be effective models for engaging indigenous students in science. The Laulima A ‘Ike Pono (LAIP) collaboration was developed to create a place-based inclusive learning environment for engaging local community members, especially Native Hawaiians and Pacific Islanders, in scientific research at a historically significant ancient Hawaiian fishpond. The LAIP internship focused on problem-solving activities that were culturally relevant to provide a holistic STEM research experience
DATE:
TEAM MEMBERS: Judith D. Lemus
resource project Public Programs
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.

Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
DATE: -
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource project Public Programs
This is a two-year "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot targeting high school students in the Hudson Valley, including the New York Metropolitan Area. It will support a network of institutional partners that are committed to providing internship and mentoring opportunities to youths interested in authentic research projects. The proposed work will build on a current research immersion program--the Secondary School Field Research Program (SSFRP) at Columbia University's Lamont-Doherty Earth Observatory. SSFRP serves high school students, mainly from underrepresented and underserved communities, who work with college students, science teachers, and researchers around a specific science problem. Over the past decade, the program has had demonstrable impact, including attendance to college, and students' selection of STEM majors. Tracking data indicates that retention rates of its alumni in four-year colleges are well above the norm, and a significant fraction of early participants are now in graduate programs in science or engineering. The program has surpassed all expectations in its effectiveness at engaging underserved populations in science and promoting entry into college, recruitment into STEM majors, and retention through undergraduate and into graduate studies. Hence, the project's overall goal will be to extend and adapt the research-immersive summer internship model through an alliance with peer research institutions, school districts and networks, public land and resource management agencies, private funding agencies, informal educational institutions, and experts in pedagogical modeling, metrics, and evaluation. Focused on earth and environmental sciences, the summer and year-round mentoring model will allow high school students to work in research teams led by college students and teachers under the direction of research scientists. The mentoring model will be multilayered, with peer, near-peer, and researcher-student relationships interweaving throughout the learning process.

The project has formulated a set of testable explanatory hypotheses: (1) Beyond specific subject knowledge, success rests on increased student engagement in a community of practice, with near-peer mentors, teachers, and scientists in the context of scientific research; (2) The intensity of engagement also shifts the students' vision of their future to include higher education, and specifically to imagine and move toward a STEM career; and (3) Early engagement, before students attend college, is critical because high school is where students form patterns of engagement and capacities related to science learning. Thus, the immediate goal of the two-year plan will be to create approximately 11 research internship programs focused on earth and environmental sciences, and to build the networks for growth through engagement with a wider community of educational partners. The main focus of this approach will be removing barriers between high school students and STEM organizations, and adapting the current mentoring model at Columbia University to the specific cultures of other research groups and internship programs throughout the lower Hudson Valley. The team has already assembled a diverse set of partners committed to broadening participation in STEM using a collective impact approach to early engagement in project-based learning. Research partners will provide the mentors, research projects, and laboratory facilities. The educational network partners will provide access for students, particularly those from under-resourced communities to participate, as well as participation opportunities for interested teachers. Informal learning organizations will provide access to field and research sites, along with research dissemination opportunities. In Year 1, the project will conduct a series of development workshops for partners already in place and foster the formation of new partnership clusters according to shared interest, complementary resources and geographic proximity. The workshops will provide a forum for partners to learn about each other's visions, values, challenges, and existing structures, while working through theoretical and practical issues related to STEM engagement for young investigators. In Year 2, the project will target the implementation of the internship programs at various sites according to the agreed-upon goals, program model, research projects, recruitment and retention strategy, staff training, data collection, and evaluation plans. An external evaluator will address both the formative and summative evaluation of the effort directed toward examining the three project's hypotheses concerning the educational impacts of scientific research on student engagement, extent of the immersion, and overall effectiveness of the programs.
DATE: -
TEAM MEMBERS: Robert Newton Luo Cassie Xu Margie Turrin Einat Lev Matthew Palmer
resource project Media and Technology
The Northwest Passage Project (NPP) is a collaborative effort between the University of Rhode Island (URI), Inner Space Center (ISC), Graduate School of Oceanography (GSO), the film company David Clark Inc., and several other partners, including six Minority Serving Institutions (MSIs) and three informal science education institutions. The project centers on a research expedition into the Arctic's Northwest Passage, which will engage intergenerational cohorts of high school, undergraduate, and graduate students in hands-on research aboard the U.S. tall ship SSV Oliver Hazard Perry (OHP). During the expedition, a professional film crew will produce a two-hour documentary focused on the NPP's innovative model of interdisciplinary informal STEM (science, technology, engineering, and mathematics) learning and highlight the expedition's research, participants, and the sociological issues related to the changing Arctic environment. Because the Canadian Arctic is remote and costly to access, the project will maximize NSF's investment by giving broad audiences access to the science and excitement of the expedition through the documentary. In addition, this informal science learning opportunity will not only engage students with scientists in authentic research, but also train the students to deliver daily live broadcasts from sea to three well-established U.S. informal science education institutions: the Smithsonian National Museum of Natural History (NMNH), the Exploratorium, and the Alaska Sea Life Center (ASLC). The daily broadcasts will also reach the public in real time via the project's interactive website, providing the opportunity for people to post questions to the scientists and students onboard the ship. The NPP has great potential to benefit society by enhancing awareness of the changing Arctic's ecosystems and increasing science literacy. The hands-on research experiences will enhance the college readiness of the participating high school students and encourage the undergraduate students from the six partner MSIs to consider a graduate course of study and/or pursue STEM careers. The graduate students will also be more career-ready, as they gain public communication and leadership skills necessary for 21st century scientists. The Northwest Passage Project is designed to advance knowledge and understanding within the practice of informal science education, as well as in the field of Arctic science. The project goals include: increasing public awareness and understanding of the changing Arctic ecosystem; increase public understanding about Arctic research and the scientific process; increase the Informal Science Education (ISE) field's understanding of the public's learning process when engaged in live interactions with scientists and student 'science communicators'; increase the ISE field's understanding of the value of immersive science experiences and impact on students from underserved and underrepresented populations; and to build or extend the capacity of ISE institutions to make connections between polar scientists, students, journalists and the public. The NPP is creative in that it combines the engagement of students in field-based scientific research, live broadcasts from sea to ISE institutions, and the production of a full-scale documentary for public audiences. A potentially transformative component to the ISE activities involves six Minority Serving Institution partners--Florida International University; University of Illinois, Chicago; California State University, Channel Islands; Texas State University; Virginia Commonwealth University and City College of New York--whose students will have the opportunity for a life-changing experience that may tip the scale toward their interest in STEM careers. Each of these students will develop news stories, host screenings of the film at their respective campuses, and share their experiences with peers, providing visual role models for other underrepresented students, who may never have thought themselves capable of becoming a scientist or science communicator. An additional project goal is to enhance the capacity and infrastructure of the three ISE partner institutions so that they may receive live broadcasts from the Inner Space Center in the future, beyond the funding period of the project. People, Places & Design Research will conduct the project's front-end and formative evaluation; MEM & Associates will conduct the summative evaluation. Some of the key evaluation questions will be: * Have ISE and MSI institution public visitors, who view either the live broadcasts or the documentary film (or both), become more aware of the changing Arctic ecosystem and the importance of scientific research in the Arctic? * What is the relative impact of the live broadcasts compared to the finished documentary, and the strengths and weakness of the respective media in translating the on-board experience? * Does a real environmental and social context for scientific evidence stimulate audiences to become more interested in the role of science/STEM? * Have students gained leadership skills and the ability to communicate science to their peers? * Have students increased their motivation and interest in pursuing STEM careers? This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Gail Scowcroft David Clark Brice Loose Dwight Coleman
resource project Professional Development, Conferences, and Networks
Most experimental studies in the behavioral sciences rely on college students as participants for reasons of convenience, and most take place in North America and Europe. As a result, studies are only sampling from a narrow range of human experiences. The results of these studies have limited generalizability, failing to reflect the full range of mental and behavioral phenomena across diverse cultures and backgrounds. However sampling from broader populations is challenging, due to limited opportunities and access, heightened cost, and the need for specific knowledge about how to adapt research protocols to different communities. The goal of this workshop is to develop some tools and guidelines to help researchers overcome barriers to broader sampling, and to incentivize doing so through better institutional support.

The goal of this workshop is to develop tools to support and encourage increased robustness and generalizability in the experimental behavioral sciences. The meeting is dedicated to identifying and developing potential solutions to the so-called "WEIRD people" problem: the fact that most experimental behavioral science research is conducted with members of WEIRD populations (Western, Educated, Industrialized, Rich Democracies). The discovery that much of this research fails to generalize to broader populations and fails to capture the range of human patterned variation in thought and behavior creates a pressing need for research approaches to be more inclusive. Although there are researchers throughout the world who have developed effective models for overcoming these limitations, there are significant barriers to achieving robust and generalizable experimental behavioral research for most researchers. This workshop will bring together scholars from a range of disciplines whose research represents positive case studies of how to overcome these barriers. The participants aspire to accomplish three goals: 1) develop tools and training materials to help researchers enhance diversity in their research populations, 2) develop infrastructure solutions for connecting researchers across diverse contexts and populations, and 3) develop a set of recommendations for institutional changes to support enhancing diversity in experimental behavioral science through manuscript, grant, and tenure review.
DATE: -
TEAM MEMBERS: Douglas Medin Daniel Hruschka Lera Boroditsky Cristine Legare