Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Ibrahim Dahlstrom-Hakki Jamie Larsen Adam Lalor
resource evaluation K-12 Programs
In fall 2019, the Bell Museum received funding via a NASA TEAM II grant to create Mars: The Ultimate Voyage, a full-dome planetarium show and accompanying hands-on activities that focus on the interdisciplinary roles that will be needed to send humans to Mars. This report from Catalyst Consulting Group presents the findings from the summative evaluation completed in March–May 2023.
DATE:
TEAM MEMBERS: VERONICA DEL BIANCO Maren Harris Karen Peterman
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will advance knowledge in the design of interest triggers for science in immersive digital simulation learning games. When learners are interested in a topic, it can have a profound impact on the quality of their learning. Although much is known about how informal learning experiences can promote interest in STEM, much less research has addressed links between technology use and interest development. This Exploratory Pathways project will investigate (1) the impact of entertainment technology use by middle school learners on STEM interest development, (2) the design of interactive educational technologies created specifically to trigger interest in astronomy, and (3) informal learning resources for sustained interaction with STEM content over time. In particular, learners will have the opportunity to interactively explore the scientific consequences of considering alternative versions of Earth via "What if?" questions, such as "What if the earth had no moon?" or "What if the earth were twice its current size?". While using the simulations, learners will be invited to make observations and propose scientific explanations for what they see as different. Given recent discoveries of potentially habitable worlds throughout the Galaxy, such questions have high relevance to public discourse around space exploration, conditions necessary for life, and the long-term future of the human race. Studies will occur across three informal learning settings: museum exhibits, afterschool programs, and summer camps, and are driven by the following research questions: What technology-based triggers of interest have the strongest influence on interest? Which contextual factors are most important for supporting long-term interest development? And, what kinds of technology-based triggers are most effective for learners from audiences who are underrepresented in STEM? This research will result in an empirically tested approach for cultivating interest that will allow educators to leverage the "What if?" pedagogy in their own work, as well as downloadable materials suitable for use in both informal and formal learning settings.

Planned studies will identify features that are effective in triggering interest, with an emphasis on groups underrepresented in STEM, and elaborate on the importance of engaging learners in explanatory dialogues and in service of interest development. It is hypothesized that interacting in such novel ways can act as a trigger for interest in astronomy, physics, and potentially other areas of STEM. Design iterations will also investigate different forms of learning supports, such as guidance from facilitators, collaboration, and automated guidance available within the simulations, and identify how features vary with respect to learning contexts. Data collected will include interview and survey data to track interest development, measures of knowledge in astronomy and physics, and log files of simulation use to better understand how behaviors in the simulations align with stated interests. Results of the studies will advance the theoretical understanding of interest development and its relationship to interactive experiences, and will also have practical implications for the deployment of technology in informal settings by identifying features critical for triggering the interest of middle school learners. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: H Chad Lane Jorge Perez-Gallego Neil Comins
resource evaluation Public Programs
Summary Girlstart’s mission is to increase girls’ interest and engagement in STEM through innovative, nationally-recognized informal STEM education programs. Girlstart examines in this report how STEM education directed toward elementary school girls influences long-term readiness and participation to math and science learning. This report compares Girlstart After School participants’ academic performance to nonparticipant performance. Specifically, it examines how Girlstart After School influences science STAAR performance and course enrollment in subsequent elementary and early middle
DATE:
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The third season of the national PBS series, SciGirls, is the first national children’s television series and website designed to engage and educate millions of children about citizen science. In each half-hour episode, a female mentor guides a group of ethnically diverse middle school girls as they learn about citizen science protocols and collect and share data for an established citizen science project. In addition to the videos, the SciGirls website presents
DATE:
TEAM MEMBERS: Barbara Flagg
resource evaluation Media and Technology
In 2011 the Bishop Museum and two collaborating organizations, University of Hawai’i at Manoa (UH) and the Pacific Voyaging Society (PVS), were awarded a multi-year grant from the Native Hawaiian Education Program (NHEP) to develop classroom and dockside curricula, an online resource center for educators, teacher workshops, a planetarium show, and a field-trip program for middle school students. The overall goal of these educational products and programs is to make STEM content accessible to Native Hawaiian students by presenting it through the lens of ancient Hawaiian navigational systems.
DATE:
resource research Media and Technology
Technology has dramatically changed learning opportunities in planetaria. In this paper, Plummer and Small examine planetarium professionals’ goals for their audiences and their pedagogical choices. The findings indicate that planetarium professionals place a high value on teaching interactively to achieve their primary goal of increased science interest and learning.
DATE:
resource research Public Programs
Bathgate, Schunn, and Correnti investigate students’ motivation toward science across three dimensions: the context or setting, the way in which students interact with science materials or ideas, and the activity topic. Findings point to the importance of understanding children’s perceptions of specific science topics, not just science in general.
DATE:
TEAM MEMBERS: Melissa Ballard
resource project Media and Technology
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:

Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.

This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
DATE: -
TEAM MEMBERS: Roger Launius
resource project Public Programs
A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
DATE: -
TEAM MEMBERS: Douglas Arion
resource evaluation Media and Technology
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
DATE:
TEAM MEMBERS: WGBH Educational Foundation Sonja Latimore Christine Paulsen