Skip to main content

Community Repository Search Results

resource project Public Programs
The Ocean Science project integrates the Ocean Literacy Essential Principles and Fundamental Concepts into a Western Washington region-wide, coordinated program of formal and informal education consisting of: 1. Teacher professional development in the ocean sciences to integrate the Ocean Literacy Essential Principles and Fundamental Concepts into inquiry-based marine science education and instruction; 2. Evaluation and re-alignment of existing Sound Science ecosystems curricula into Ocean Science, incorporating NOAA data and promoting the Ocean Literacy Essential Principles and Fundamental Concepts; 3. Classroom programs, beach field investigations, and on-site programs at the Seattle Aquarium of the Olympic Coast national Marine Sanctuary's Olympic Coast Discovery Center for grades 4-5 students, their parents and teachers; 4. Parent training in ocean science content, the Ocean Literacy Essential Principles and Fundamental Concepts, and inquiry-based methods for supporting their children's science education; 5. Informal education for the general public via an interactive learning station linked to the Window on Washington Waters exhibit and designed to innovatively use NOAA data and information (videos, computer simulations and other creative media) to increase and evaluate ocean literacy in adults and children. Window on Washington Waters displays the outer coast marine environments and sea life of the Olympic Coast National Marine Sanctuary.
DATE: -
TEAM MEMBERS: Kathy Sider
resource project Media and Technology
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.

Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.

These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE: -
TEAM MEMBERS: Richard Ladner Libby Cohen Sheryl Burgstahler William McCarthy
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource evaluation Public Programs
The MyBEST (Mentoring Youth Building Employable Skills in Technology) project, funded by a grant from the National Science Foundation's Informal Science Education program, concluded its three years of operation in 2006. This youth-based program was intended to provide participants with in-depth learning experiences involving information and design technologies. These experiences had a dual focus: enabling youth participants to gain fluency in using these technologies while showing them how adults apply them in work and academic endeavors. Appendix includes survey.
DATE:
TEAM MEMBERS: Elizabeth Xue
resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource research Media and Technology
To explore how the United States can harness the powerful features of digital games for learning, the Federation of American Scientists, the Entertainment Software Association, and the National Science Foundation convened a National Summit on Educational Games, on October 25, 2005 in Washington, DC. The Summit brought together nearly 100 experts to discuss ways to accelerate the development, commercialization, and deployment of new generation games for learning.
DATE:
TEAM MEMBERS: Federation of American Scientists Henry Kelly
resource research Public Programs
An annual conference gathers young Native Americans from several states and many tribes to celebrate their culture, deal with issues they face in their communities, and get involved in tribal and state political issues.
DATE:
TEAM MEMBERS: Sara Hill
resource research Media and Technology
As the astronomy education community develops, a need has arisen for concrete research and evaluation methodologies, especially within informal educational settings. We propose one such methodology, action evaluation, which attempts to demystify the process of research/evaluation and recruit as partners those who are traditionally left out of this process. Based on the tradition of action research, this methodology incorporates research/evaluation into the fabric of programs and places the researcher/educator in a centralized role. We provide concrete examples of tools that we have used to
DATE:
TEAM MEMBERS: Nicholas Stroud Meghan Groome Rachel Connolly Keith Sheppard
resource research Professional Development, Conferences, and Networks
This article examines the impact of the ‘new professionalism’ on the culture of professional development of science teachers. In the era of ‘new professionalism’ there is an expectation that teachers will engage in professional development, but rather than encouraging an intrinsic desire to learn as professionals, it promotes forms of professional development that are often centrally imposed and determined by political rather than educational imperatives. As a result, a culture of low trust prevails that may leave science teachers feeling deprofessionalised rather than empowered and feeling
DATE:
TEAM MEMBERS: Keith Bishop Paul Denleg
resource evaluation Professional Development, Conferences, and Networks
This professional development event was held on November 6 and 7, 2005 at the Museum of Science, Boston, under the direction of the Museum’s Director for Strategic Projects, Carol Lynn Alpert. This event was sponsored by the Center for High-rate Nanomanufacturing NSF Nanoscale Science and Engineering Center (NSEC) headquartered at Northeastern University, the University of Massachusetts – Lowell, and by the “Science of Nanoscale Systems and their Device Applications” NSF NSEC headquartered at Harvard University. The Symposium was intended to provide educators from middle schools, high schools
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert Barbara Flagg Elissa Chin Christine Reich
resource project Media and Technology
The goal of this engineering education project entitled EXTRAORDINARY WOMEN ENGINEERS (EWE) is to encourage more academically prepared high school girls to consider engineering as an attractive option for post-secondary education and subsequent careers in order to increase the number of women who make up the engineering workforce. Specific project objectives are to: 1) mobilize America's more than one million engineers to reach out to educators, school counselors, and high school girls with tested messages tailored to encourage participation in engineering education and careers; 2) help high school counselors and science, math, and technology teachers to better understand the nature of engineering, the academic background needed to pursue engineering, and the career paths available in engineering; 3) equip high school counselors and teachers to share this information with students, especially girls; and 4) reach out to girls directly with messages that accurately reflect the field of engineering and will inspire girls to choose engineering. The WGBH Educational Foundation has partnered with the American Association of Engineering Societies (AAES), American Society of Civil Engineers (ASCE), and a coalition of more than 50 of the country's engineering associations, colleges, and universities to fundamentally shift the way the engineering and educational communities portray engineering. Based on a needs assessment performed in 2004, the EWE coalition embraces a communication strategy that focuses on the societal value and rewards of being an engineer, as opposed to the traditional emphasis on the process and challenges of becoming an engineer. This project represents a nationwide outreach effort that includes training opportunities for engineers; targeted Web-based and print resources for students, school counselors and teachers, and engineers; and a range of outreach and marketing activities.
DATE: -
TEAM MEMBERS: Julie Benyo Patrick Natale F. Suzanne Jenniches