Skip to main content

Community Repository Search Results

resource project Media and Technology
This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.

This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.

This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
DATE: -
TEAM MEMBERS: Casey Lynch David Feil-Seifer
resource research Public Programs
Science and technology have become tools to legitimize messages that affect the world in terms of society, politics and economy. This paper presents part of the results of a study that analyzed the symbolic construction of the future in the scientific-technological discourse at EPCOT theme park in Orlando, Florida. The sociohistorical conditions and narrative strategies are analyzed based on the theoretical and methodological approach by John B. Thompson. The results highlighted that the construction of the notion of progress is strongly influenced by the commercial and political interests of
DATE:
TEAM MEMBERS: Daniela Martin
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource research Museum and Science Center Programs
The National Autonomous University of Mexico (UNAM) is one of the world's single largest employers of science communicators, with over 350,000 students and 40,000 staff. Its science communication activities include five museums (Universum, Museo de la Luz, the Geology Museum, Museo de la Medicina Mexicana and Musem of Geophysics), botanical gardens, as well as a wide range of cultural and outreach activities. It has several programmes for training professional science communicators. The science communication staff are spread across the campuses in Mexico City and four other cities, including
DATE:
TEAM MEMBERS: Ana Claudia Nepote Elaine Reynoso-Haynes
resource project Public Programs
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project from the University of New Hampshire focuses on a "living bridge", which exemplifies the future of smart, sustainable, user-centered transportation infrastructure. Bridges deliver such a fundamental service to society that they are often taken for granted. Typically, bridges only stir the public's interest when they must unexpectedly be replaced at great cost, or, worse, fail. The Living Bridge project will create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy, by transforming the landmark Memorial Bridge--a vertical lift bridge over the tidal Piscataqua River, with pedestrian access connecting Portsmouth, New Hampshire to Kittery, Maine--into a living laboratory for researchers, engineers, scientists, and the community at large. The Living Bridge will engage innovators in sensor and renewable energy technology by creating an incubator platform on a working bridge, from which researchers can field test and evaluate the impact and effectiveness of emerging technologies. The Living Bridge will also serve as a community platform to educate citizens about innovations occurring at the site and in the region, and about how incorporating renewable energy into bridge design can lead to a sustainable transportation infrastructure with impact far beyond the region. Sustainable, smart bridges are key elements in developing a successful infrastructure system. To advance the state of smart service systems and clean energy conversion, this project team will design and deploy a structural and environmental monitoring system that provides information for bridge condition assessment, traffic management, and environmental stewardship; advances renewable energy technology application; and excites the general public about bridge innovations. This PFI:BIC project is enabled through partnerships between academic researchers with expertise in structural, mechanical and ocean engineering, sensing technology and social science; small businesses with expertise in instrumentation, data acquisition, tidal energy conversion; and state agencies with bridge design expertise. The Living Bridge technical areas are structural health monitoring, tidal energy conversion with fluid-structure interaction measurements, estuarine environmental monitoring, and outreach communication. Sensors will be used to calibrate a three-dimensional analytical structural finite element model of the bridge. The predicted structural response from this model will assess the measured structural response of the bridge as acceptable or not. Instruments installed on the turbine deployment platform will measure the spatio-temporal structure of the turbulent inflow and modified wake flow downstream of the turbine. Resulting data will include turbine performance and loads for use in fluid-structure interaction models. Deployed environmental sensors will measure estuarine water quality; wildlife deterrent sensors will deter fish from the turbine. Hydrophones and video cameras will be used before and during turbine deployment to monitor environmental changes due to turbine presence. Outreach efforts will make bridge data, history, and information about new systems accessible and understandable to the public and K-12 educators, facilitated by an information kiosk installed at the bridge. Public awareness will be assessed with survey methods used in the N.H. Granite State Poll. The lead institution is the University of New Hampshire (UNH) with its departments of Civil Engineering, Mechanical Engineering, and Sociology, and the Center for Ocean Engineering. Primary industrial partners are a large business, MacArtney Underwater Technology Group, Inc. (Houston, TX) and two small businesses Lite Enterprises, Inc. (Nashua, NH) and Eccosolutions, LLC (New Paltz, NY.) Broader context partners are New Hampshire Department of Transportation, NH Fish & Game Department, NH Port Authority, NH Coastal Program, City of Portsmouth (NH), Sustainable Portsmouth (nonprofit), Maine Department of Transportation; U.S. Coast Guard, Archer/Western (Canton, MA, large business), Parsons-Brinkerhoff (Manchester, NH, large business), UNH Tech Camp, UNH Infrastructure and Climate Network, UNH Leitzel Center for Mathematics, Science and Engineering Education, and Massachusetts Institute of Technology's Changing Places (a joint Architecture and Media Laboratory Consortium, in Cambridge, MA).
DATE: -
TEAM MEMBERS: Erin Bell Tat Fu Martin Wosnik Kenneth Baldwin Lawrence Hamilton
resource project Public Programs
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
DATE: -
resource project Exhibitions
Beginning in 2010, Thanksgiving Point Institute leveraged its one-of-a-kind assets to deliver NASA and space-related programming. Informally referred to as NASA BLAST (Bringing Light and Space Together), the program included three exhibitions and a multitude of informal learning opportunities including field trips, camps, classes, and family programming. During the two-year program, Thanksgiving Point achieved its goal of increase the public’s knowledge and awareness of STEM (science, technology, engineering, and math). Thanksgiving Point incorporated unique space-related messages in each of its venues and provided educational lessons to 554,873 guests. Thanksgiving Point did this through three exhibitions: a light exhibition at the Museum of Ancient Life featuring exhibitions from San Francisco’s Exploratorium, a space garden at Farm Country, and walk able version of the solar system at Thanksgiving Point Gardens. In addition, Thanksgiving Point hosted a number of youth programs, day camps, and field trips centered on these exhibitions.
DATE: -
TEAM MEMBERS: Allen Ash
resource project Exhibitions
The St. Louis Science Center is a major metropolitan science museum serving a population of 2.3 million people. One year ago they moved into a new facility at a new location and attendance at the museum has tripled, reaching 600,00 visitors this past year. The center will develop a "Science Playground" in order to teach basic science principles and process through a series of 45 outdoor participatory exhibitions around the major areas of motion, energy, light, sound and the natural environment. The physics of motion will be explored through exhibits such as a friction slide, lunar gravity swing, double-axis human pendulum, etc. Energy exhibits will provide experiences with watermills and water power, fulcrum leverage and solar energy. Light exploration includes a solar column, prisms and rainbows, soundwheel and whisper discs. A weather station will have a rain gauge, anemometer, a variety of barometers, etc. This contemporary playground concept was developed as a response to limitations of indoor facilities and to extend use of outdoor space in a creative manner. The exhibit will be a model for extending science learning opportunities for schools, parks, other science museums and similar institutions. The center surveyed 31 science centers, 82 parks and 85 school districts to gauge interest in use of science playground exhibits, and found a clear interest in this type of project by all sectors surveyed. Exhibit designs will be published and furnished at cost to any facility wishing to replicate all or any part of the exhibition.
DATE: -
TEAM MEMBERS: Jeffrey Bonner
resource project Exhibitions
With this planning grant, the staff of the Bucks County Historical Society will work with a group of museum professionals and community representatives to develop plans for interactive exhibits that have science and math content that will be placed in an outdoor park. They want visitors to learn about the science, history, and aesthetics of early American hand tools and technology by experiencing various hands-on activities. The planning activities will include meetings of the planning committees, front-end evaluation, and the testing of some prototype activities. At the end of the twelve month planing period they will have 1) a better understanding of their audience and their knowledge of the science and technology to be presented in the exhibit, 2) a schematic design for the activities to be included in the park, 3) plans for complementary educational activities, and 4) results of prototype testing of selected activities.
DATE: -
TEAM MEMBERS: Douglas Dolan
resource project Exhibitions
The goal of Science City: New York as a Science and Technology Exhibit, is to increase public awareness and interest in science and technology in daily life by creating "found exhibits" in public places throughout New York City. This proposal is based on a 1986 pilot project which developed criteria and concepts for successful Science City units and a prototype exhibit operating in a tourist elevator at the World Trade Center. Science City will use the streets and structures of New York to present the science and technology of everyday life. It will reach the science inattentive public who do not go to science museums. Eye-catching exhibits such as diffraction gratings mounted on bus shelters will reveal the different spectra of the incandescent, flourescent, neon, and mercury vapor lamps, already part of the street scene. The New York Hall of Science will place Science City exhibits in public parks, subways, bus kiosks, and building lobbies. Ten to fifteen different exhibits/signs, each replicated an average of 10 times, will be installed and evaluated throughout the boroughs of Queens and Manhattan.
DATE: -
TEAM MEMBERS: Alan Friedman Peggy Cole Theodore Ansbacher
resource project Media and Technology
The University of Florida, in collaboration with the Florida Museum of Natural History and Institute of Food and Agricultural Sciences Extension, National 4-H, Association of Zoos and Aquariums, Jacksonville Zoo and Gardens, and the Institute for Learning Innovation will implement Call the Wild, a proof-of-concept project to investigate the educational outcomes of promoting understanding of the nature of science (NOS) through visitor engagement in outdoor exhibits that incorporate mobile technology to further focus attention and deliver unique content. The project will explore: (1) zoo visitor ownership of cell phones, use of the different cell phone features, and likelihood to access interactive content and activities through their phone; (2) the potential of wildlife viewing experiences and technology applications for engaging visitors in learning about NOS; and (3) the potential to measure visitor understanding of NOS related to zoo experiences. This project seeks to advance our understanding of the educational impacts of mobile telephony in informal learning environments such as zoos.
DATE: -
TEAM MEMBERS: Betty Dunckel Paul Boyle Joy Jordan Janet Daniels
resource project Media and Technology
The objective of this project is to extend the concept of crowdsourcing in citizen science to the interaction design of the organization as well as to data collection. Distributed technologies offer new opportunities for conducting scientific research on a larger scale than ever before by enabling distributed collaboration. Virtual organizations that use distributed technologies in scientific organizations have primarily focused on how dedicated, professional scientists collaborate and communicate. More recently a rapidly increasing number of citizen science virtual organizations are being formed. Citizen scientists participate in scientific endeavors and typically lack formal credentials, do not hold professional positions in scientific institutions, and bring diversity of knowledge and expertise to projects and challenges. They participate in scientific endeavors related to their personal scientific interests and create new challenges for the design of virtual organizations. In terms of intellectual merit, the project will make three specific contributions: a new interaction design for collecting biodiversity data within a nature park, a model for crowdsourcing the design of an social computing approach to citizen science, and an analysis of the impact of crowdsourcing the design on motivating participation in collecting biodiversity data. Interactive tabletop computers will be placed in two nature parks so that the design of the citizen science environment can be embedded in a park experience and engage the public in understanding more about their parks, in data collection, and develop a personal commitment to environmental sustainability issues. In terms of broader impacts, the project provides three types of impact: research training by including graduate students, broad public dissemination to enhance scientific understanding of biodiversity, and benefits to society through association with the Aspen Center for Environmental Studies (ACES) and Encyclopedia of Life (EOL).
DATE: -
TEAM MEMBERS: Mary Lou Maher Tom Yeh Jennifer Preece