Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
resource project Public Programs
Mathematizing, Visualizing, and Power (MVP): Appalachian Youth Becoming Data Artists for Community Learning is a three-year Advancing Informal STEM Learning, Innovations and Development, project that focuses on community-centered data exploration catalyzed by youth. The project develops statistical artistry among young people in East Tennessee Appalachian communities and enables these youth to share their data visualizations with their communities to foster collective reflection and understanding. The creative work generated by the MVP project will be compelling in two ways, both as statistical art and as powerful statements giving voice to the experience of communities. Critical aspects of the MVP model include (1) youth learning sessions that position youth as owners of data and producers of knowledge and (2) Community Learning Events that support community learning as youth learning occurs. The MVP project has a primary focus on broadening the STEM participation of underrepresented communities of Appalachia. The project’s mission is to increase the learning and life outcomes of young people and communities of Appalachia by creating a meaningful foundation of data science and collective data exploration. The University of Tennessee partners with Pellissippi State Community College, Drexel University, and the Boys & Girls Club of the Tennessee Valley to bring together a convergent team of community members, practitioners, and professionals, with the expertise to carry out the project. The project will impact approximately 120 youth and 3800 of their East Tennessee community members. The research generated will inform how to engage community members in learning about community issues through the exploration of datasets relevant to participants.

The field of STEM education is in urgent need of knowledge about effective models to inspire community-based data exploration with young people as leaders in these efforts. The MVP project includes engaging youth with meaningful problems, building a discourse community with possibilities for action, re-positioning youth as knowledge producers within their own communities, leveraging linguistic and cultural resources of the youth participants and their communities, and implementing critical events that support substantial interaction between youth, community members, and the data visualizations. MVP builds on the idea that the design of data visualizations requires an understanding of both data science and artistic design. Research will inform the model of community engagement, examine data artists’ identities, and document community learning. The MVP model will be designed, developed, tested, and refined through three cycles of design-based research. The overarching research question guiding these cycles is: What affordances (and delimitations) related to identity and learning does the model provide for MVP Youth and community members? Data sources for the project include: fieldnotes, portfolios created by MVP Youth, youth pre/post interviews, observations of the learning sessions, a project documentary, surveys for youth and community members, interviews with community members, and audience feedback. The National Institute for STEM Evaluation and Research (NISER) will provide formative and summative evaluation about project activities. Formative feedback will be integrated into the ongoing research cycles. The research conducted will inform (1) the community learning model; (2) the integrated pedagogy and curriculum of the MVP Youth learning sessions that emphasize data science through design arts; and, (3) research on community learning and youth identity. Findings will be shared through conferences, academic and practitioner-focused journals, a video documentary, a Summit on Engaging Youth and Communities in Data, and a project website.
DATE: -
TEAM MEMBERS: Lynn Hodge Elizabeth Dyer Joy Bertling Carlye Clark
resource research Public Programs
New York City is a leader in Open Data initiatives, and has a large and diverse population. This project studies informal data science learning at workshops and trainings associated with NYC’s open data ecosystem. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Oded Nov Camillia Matuk Graham Dove
resource research Media and Technology
Numeracy is not a luxury: numbers constantly factor into our daily lives. Yet adults in the United States have lower numeracy than adults in most other developed nations. While formal statistical training is effective, few adults receive it – and schools are a major contributor to the inequity we see among U.S. adults. That leaves news well-poised as a source of informal learning, given that news is a domain where adults regularly encounter quantitative content. Our transdisciplinary team of journalists and social scientists propose a research agenda for thinking about math and the news. We
DATE:
TEAM MEMBERS: Jena Barchas-Lichtenstein John Voiklis Laura Santhanam Nsikan Akpan Shivani Ishwar Elizabeth Attaway Patti Parson John Fraser
resource research Media and Technology
The news arguably serves to inform the quantitative reasoning (QR) of news audiences. Before one can contemplate how well the news serves this function, we first need to determine how much QR typical news stories require from readers. This paper assesses the amount of quantitative content present in a wide array of media sources, and the types of QR required for audiences to make sense of the information presented. We build a corpus of 230 US news reports across four topic areas (health, science, economy, and politics) in February 2020. After classifying reports for QR required at both the
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Elizabeth Attaway Uduak G. Thomas Shivani Ishwar Patti Parson Laura Santhanam Isabella Isaacs-Thomas
resource research Informal/Formal Connections
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS: Yuko Ikkatai Azusa Minamizaki Kei Kano Atsushi Inoue Euan McKay Hiromi M. Yokoyama
resource research Public Programs
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS: Alex Bell Raj Chetty Xavier Jaravel Neviana Petkova John Van Reenen
resource research Media and Technology
One part personal reflection, one part literature synthesis. This essay reflects on official statistics, common misunderstandings, and the COVID-19 numbers we're all becoming increasingly familiar with. The author calls on news audiences and journalists alike to become more knowledgeable about what official statistics can and can't do -- and to question the epistemic priority that so many people reflexively give to numbers by paying attention to what is not included.
DATE:
resource project Public Programs
This AISL Pilots and Feasibility project will study the data science learning that takes place as members of the public explore and analyze open civic data related to their everyday lives. Government services, such as education, transportation, and non-emergency municipal requests, are becoming increasingly digital. Generally, program workshops and events may be able to support participants in using such data to answer their own questions, such as: "How do City agencies respond to noise in my neighborhood?" and "How do waste and recycling services in my neighborhood compare with others?" This project seeks to understanding how such programs are designed and facilitated to support diverse communities in accessing and meaningfully analyzing data will promote innovation and knowledge building in informal data science education. The team will begin by summarizing best practices in data science education from a variety of fields. Next they will explore the design and impacts of two programs in New York City, a leader in publicly available Open Data initiatives. This phase will explore activities and facilitation approaches, participants' objectives and data literacy skills practice, and begin to identify potential barriers to entry and levels of participation. Finally, the team will build capacity for other similar organizations to explore and understand their impacts on community members' engagement with civic data. This pilot study will establish preliminary evidence of the effectiveness of these programs, and in turn, inform future research into the identifying and amplifying best practices to support public engagement with data.

This research team will begin by synthesizing data science learning best practices based on varied literatures and surveys with academic and practitioner experts.

Synthesis results will be applied as a lens to gather preliminary evidence regarding the impacts of two programs on participants' data science practices and understanding of the nature of data in the context of civics. The programs include one offered by the Mayor's Office of Data Analytics (MODA), which is the NYC agency with overall responsibility for the City's Open Data programs, and BetaNYC, a leading nonprofit organization working to improve lives through civic design, technology, and engagement with government open data. The research design triangulates ethnographic observations and artifacts, pre and post adapted surveys, and interviews with participants and facilitators. Researchers will identify programmatic metrics and adapts existing measures to assess various outcomes related to public engagement with data, including: question formulation, data set selection and manipulation, the use of data to make inferences, and understanding variability, sampling and context. These metrics will be shared through an initial assessment framework for data science learning in the context of community engagement with civic open data. Researchers will also begin to identify barriers to broader participation through literature synthesis, interviews with participants and facilitators, and conversations with other organizations in our networks, such as NYC Community Boards. Findings will determine the suitability of the programs under study and inform future research to identify and amplify best practices in supporting public engagement with data.

This project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Oded Nov Camilia Matuck Graham Dove
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource evaluation Media and Technology
Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
DATE:
resource project Professional Development, Conferences, and Networks
Vassar College is conducting a 2.5-day conference, as well as pre- and post-conference activities, that convenes a multi-disciplinary, multi-institutional (USA and international) team to conceptualize and plan various research, education and outreach activities in informal learning, focusing on the seminal concept of tensegrity and its applications in many fields of science and mathematics. Tensegrity is the characteristic property of a stable three-dimensional structure consisting of members under tension that are contiguous and members under compression that are not.

The conference will bring together researchers and practitioners in informal learning and researchers in the various disciplines that embrace tensegrity (mathematics, engineering, biology, architecture, and art) to explore the potential that tensegrity has to engage the public in informal settings, especially through direct engagement in creating such structures. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

To date there have been no sustained informal educational projects and research around the topic of tensegrity. However, there is considerable related work on learning through "making and tinkering" upon which the participants will adapt and expand. The intended conference outcomes are to produce prototypes of activities, a research agenda, and lines of development with the potential to engage the wider public. A key priority of the gathering is the development of new partnerships between researchers and creators of tensegrity systems and the informal learning professionals. The long-term project hypothesis is that children and adults can engage with tensegrity through tinkering with materials and becoming familiar with a growing set of basic structures and their applications. The activities will include evaluation of the conference and a social network analysis of the collaborations that result.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: John McCleary