Skip to main content

Community Repository Search Results

resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource research Public Programs
Robotic Autonomy is a seven-week, hands-on introduction to robotics designed for high school students. The course presents a broad survey of robotics, beginning with mechanism and electronics and ending with robot behavior, navigation and remote teleoperation. During the summer of 2002, Robotic Autonomy was taught to twenty eight students at Carnegie Mellon West in cooperation with NASA/Ames (Moffett Field, CA). The educational robot and course curriculum were the result of a ground-up design effort chartered to develop an effective and low-cost robot for secondary level education and home use
DATE:
TEAM MEMBERS: Illah Nourbakhsh Kevin Crowley Ajinkya Bhave Emily Hamner Thomas Hsiu Andres Perez-Bergquist Steve Richards Katie Wilkinson
resource research Public Programs
This research study reports on the evaluation of the outcome and impact of learning as a result of the implementation of Education Programme Delivery Plans in 69 museums in the nine regional museum hubs in England during September, October and November 2005. This is the second study of the impact of learning achieved through museum school services which have been funded through the Renaissance in the Regions programme, which provides central government funding to museums in the English regions. The first study 'What did you learn at the museum today?' was carried out in 2003. The findings of
DATE:
TEAM MEMBERS: Eilean Hooper-Greenhill Jocelyn Dodd Lisanne Gibson Martin Phillips Ceri Jones Emma Sullivan
resource research Public Programs
In recent years, afterschool programs have come to be envisioned as sites for addressing the failure of urban schools to provide adolescents with the requisite skills and knowledge to participate in a rapidly shifting social, political, and economic landscape. The purpose and nature of such educational endeavors has taken many varied forms, as a growing number of stakeholders become invested in shaping the direction and implementation of afterschool programming. However, youth, as the recipients of these programs, have rarely been looked to as sources of experiential knowledge about the
DATE:
TEAM MEMBERS: Katherine Schultz Edward Brockenbrough Jaskiran Dhillon
resource research Exhibitions
This paper reports a formative evaluation of an interactive exhibit in the Museum of Science, Boston, that encouraged visitors to create a model using everyday materials. The materials provided for visitors to create their models changed during the period of the evaluation, and visitors were observed and interviewed as they engaged with the various prototypes. Evaluation results show that the type of modeling material presented influenced the visitors' model making process and individual learning and behaviors as well as the interactions visitors had with each other.
DATE:
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource evaluation Media and Technology
Given its ongoing commitment to universal design and the integration of technologies into the museum experience, the Museum of Science decided to employ a handheld Multimedia Tour to accompany Star Wars: Where Science Meets Imagination, an exhibition about the real world meeting Star Wars technologies. With the help of leading tour guide developer, Antenna Audio, a 22-stop tour was produced featuring narration, Behind the Scenes interviews with individuals who had worked on the films, Star Wars film clips, still photos and the ability to send information home. An American Sign Language version
DATE:
TEAM MEMBERS: Elissa Chin Christine Reich Museum of Science
resource evaluation Public Programs
Overarching evaluation questions focus on continuous improvement, the degree to which the Salmon Camp project achieves its objectives with regards to students' skills and attitudes, as well as implementation and outcome questions. Evaluation activities are designed to probe five major areas: 1. Student Knowledge and Skills. To what extent do students gain experience with digital tools, field research, and workplace skills? 2. Student Attitudes. How are students' attitudes and self-efficacy as science students changing with involvement in Salmon Camp? How are career interests changing or
DATE:
TEAM MEMBERS: Phyllis Ault Oregon Museum of Science and Industry
resource project Exhibitions
Over a three year period, the Museum of Science, Boston will develop a national traveling exhibition and associated programs that will support the goals and standards for technological literacy that were recently articulated in reports by the National Academy of Engineering and the International Technology Education Association. Intellectual Merit. The exhibit will take advantage of the widely known characters and images of future technology from the Star Wars movies to attract visitors and to engage them in learning about potential technologies that may impact our lives. It incorporates new and adapted interactive devices that will involve visitors in inquiry-based learning about technologies related to frictionless land vehicles, robotic mobility mechanisms, and habitats for living underwater and in space. Broader Impact. The exhibition will reach a large national audience by traveling to the members of the Science Museum Exhibit Collaborative as well as other institutions. Use of popular culture, science fiction and futuristic technology will help attract those who may not be traditional science center visitors. Educational impact will be extended through programming for the public and school groups, including materials for institutions that do not host the exhibition, along with a website.
DATE: -
resource project Public Programs
ScienceQuest is an innovative program created by the Education Development Center that fosters an interest in science and technology among adolescents ages 10-14. This program builds on the successful "ThinkQuest" model, in which small teams of 2-3 students work with adult coaches to research subjects of interest and share their knowledge through the creation of websites. "ScienceQuest" teams focus on science topics and are housed in HUD Neighborhood Network technology centers, located in communities with HUD-assisted or insured housing residents. Participants include individuals with and without disabilities from low-income urban areas. Students select a science topic and research it using online resources, hands-on experiments and visits to museums and science centers. Coaches such as scientists, teachers, museum staff and other role models, as well as on-line scientists, provide assistance by setting goals, devising an action plan and identifying appropriate resources. The "I-Search" model, a four-step strategy used to direct student inquiry, is used to guide investigations and aid in content acquisition. Once completed, websites are mounted on the "ThinkQuest" server. Parental participation is encouraged throughout the process. "ScienceQuest" will be piloted in the greater Boston area in year one, and disseminated to 75 Neighborhood Network sites throughout the country in years two and three of the grant. Each site may have one or more teams. With more than 500 Neighborhood Networks in place, "ScienceQuest" has the potential for widespread dissemination.
DATE: -
TEAM MEMBERS: Judith Zorfass
resource project Public Programs
The "Environmental Science Information Technology Activities (ESITA)" based at the Lawrence Hall of Science (LHS) at UC-Berkeley is a three-year, youth-based proposal that seeks to engage 144 inner-city ninth and tenth graders in learning experiences involving environmental science and information technology. The goal of the project is to develop, field-test, and disseminate an effective student-centered, project-based model for increasing understanding and interest in information technology. Program components included an afterschool program, summer enrichment and an internship program. An extensive partnership involving community based agencies, environmental science organizations, a local high school and industry support the project by serving as host sites for the afterschool program and internship component. Student participation in project-based, IT-dependent research activities related to environmental science will occur year round. Students will research air and water quality in their local communities and study attitudes toward -- and use of -- information technology among their peers. The focus of the research activities is based on the results of a students-needs assessment. Students participate in the program over a two-year period and are expected to receive at least 240 total contact hours. The afterschool program serves as the project's principal mechanism for content delivery. The five-month afterschool program consists of inquiry-based mini-courses on the following topics: Information Technology tools and concepts, earth and physical science, data compilation and modeling, and publication of research results. The summer enrichment component encompasses a series of workshops at LHS; excursions to IT-related exhibits, environmental facilities, and IT-based companies; and an annual student robotics fair. During the second year of program participation students will complete 12-month internships to support the application of concepts and skills learned the first year. The LHS Student Geoscience Research Opportunities program will serve as a model host site for the program. Stipends are provided throughout the program to encourage student participation and retention.
DATE: -
TEAM MEMBERS: Kevin Cuff Marco Molinaro